THE ANNALS
of
PROBABILITY

AN OFFICIAL JOURNAL OF THE
INSTITUTE OF MATHEMATICAL STATISTICS

Articles

Pfaffian Schur processes and last passage percolation in a half-quadrant
JINHO BAIK, GUILLAUME BARRAQUAND, IVAN CORWIN AND TOUFIC SUIDAN 3015

Pathwise uniqueness of the stochastic heat equation with spatially inhomogeneous white noise
EYAL NEUMAN 3090

A quantitative central limit theorem for the Euler–Poincaré characteristic of random spherical eigenfunctions
VALENTINA CAMMAROTA AND DOMENICO MARINUCCI 3188

Representations and isomorphism identities for infinitely divisible processes
JAN ROSIŃSKI 3229

Coupling in the Heisenberg group and its applications to gradient estimates
SAYAN BANERJEE, MARIA GORDINA AND PHANUEL MARIANO 3275

First-passage times for random walks with nonidentically distributed increments
DENIS DENISOV, ALEXANDER SAKHANENKO AND VITALI WACHTEL 3313

Canonical supermartingale couplings
MARCEL NUTZ AND FLORIAN STEBEGG 3351

A weak version of path-dependent functional Itô calculus
DORIVAL LEÃO, ALBERTO OHASHI AND ALEXANDRE B. SIMAS 3399

Lower bounds for the smallest singular value of structured random matrices
NICHOLAS COOK 3442

The scaling limits of the Minimal Spanning Tree and Invasion Percolation in the plane
CHRISTOPHE GARAN, GÁBOR PETE AND ODED SCHRAMM 3501

Quenched central limit theorem for random walks in doubly stochastic random environment
BÁLINT TÓTH 3558

The KLS isoperimetric conjecture for generalized Orlicz balls
ALEXANDER V. KOLESNIKOV AND EMANUEL MILMAN 3578
PFAFFIAN SCHUR PROCESSES AND LAST PASSAGE PERCOLATION IN A HALF-QUADRANT

BY JINHO BAIK*,2, GUILLAUME BARRAQUAND†,3, IVAN CORWIN†,4 AND TOUFIC SUIDAN

University of Michigan* and Columbia University†

We study last passage percolation in a half-quadrant, which we analyze within the framework of Pfaffian Schur processes. For the model with exponential weights, we prove that the fluctuations of the last passage time to a point on the diagonal are either GSE Tracy–Widom distributed, GOE Tracy–Widom distributed or Gaussian, depending on the size of weights along the diagonal. Away from the diagonal, the fluctuations of passage times follow the GUE Tracy–Widom distribution. We also obtain a two-dimensional crossover between the GUE, GOE and GSE distribution by studying the multipoint distribution of last passage times close to the diagonal when the size of the diagonal weights is simultaneously scaled close to the critical point. We expect that this crossover arises universally in KPZ growth models in half-space. Along the way, we introduce a method to deal with diverging correlation kernels of point processes where points collide in the scaling limit.

REFERENCES

MSC2010 subject classifications. Primary 60K35, 82C23; secondary 60G55, 05E05, 60B20.

Key words and phrases. Last passage percolation, KPZ universality class, Tracy–Widom distributions, Schur process, Fredholm Pfaffian, phase transition.

PATHWISE UNIQUENESS OF THE STOCHASTIC HEAT EQUATION WITH SPATIALLY INHOMOGENEOUS WHITE NOISE

BY EYAL NEUMAN

Imperial College London

We study the solutions of the stochastic heat equation driven by spatially inhomogeneous multiplicative white noise based on a fractal measure. We prove pathwise uniqueness for solutions of this equation when the noise coefficient is Hölder continuous of index \(\gamma > 1 - \frac{\eta}{2\eta + 1} \). Here \(\eta \in (0, 1) \) is a constant that defines the spatial regularity of the noise.

REFERENCES

MSC2010 subject classifications. Primary 60H10; secondary 60H40, 60J80.

Key words and phrases. Uniqueness, white noise, stochastic partial differential equations, heat equation, catalytic superprocesses.

A QUANTITATIVE CENTRAL LIMIT THEOREM FOR THE EULER–POINCARÉ CHARACTERISTIC OF RANDOM SPHERICAL EIGENFUNCTIONS

BY VALENTINA CAMMAROTA AND DOMENICO MARINUCCI

Sapienza University of Rome and University of Rome Tor Vergata

We establish here a quantitative central limit theorem (in Wasserstein distance) for the Euler–Poincaré characteristic of excursion sets of random spherical eigenfunctions in dimension 2. Our proof is based upon a decomposition of the Euler–Poincaré characteristic into different Wiener-chaos components: we prove that its asymptotic behaviour is dominated by a single term, corresponding to the chaotic component of order two. As a consequence, we show how the asymptotic dependence on the threshold level \(u \) is fully degenerate, that is, the Euler–Poincaré characteristic converges to a single random variable times a deterministic function of the threshold. This deterministic function has a zero at the origin, where the variance is thus asymptotically of smaller order. We discuss also a possible unifying framework for the Lipschitz–Killing curvatures of the excursion sets for Gaussian spherical harmonics.

REFERENCES

MSC2010 subject classifications. 60G60, 62M15, 53C65, 42C10, 33C55.

Key words and phrases. Euler–Poincaré characteristic, Wiener-chaos expansion, spherical harmonics, quantitative central limit theorem, Gaussian kinematic formula, Berry’s cancellation phenomenon.

REPRESENTATIONS AND ISOMORPHISM IDENTITIES FOR INFINITELY DIVISIBLE PROCESSES

BY JAN ROSIŃSKI

University of Tennessee

We propose isomorphism-type identities for nonlinear functionals of general infinitely divisible processes. Such identities can be viewed as an analogy of the Cameron–Martin formula for Poissonian infinitely divisible processes but with random translations. The applicability of such tools relies on precise understanding of Lévy measures of infinitely divisible processes and their representations, which are studied here in full generality. We illustrate this approach on examples of squared Bessel processes, Feller diffusions, permanental processes, as well as Lévy processes.

REFERENCES

MSC2010 subject classifications. Primary 60E07, 60G15, 60G17, 60G51; secondary 60G60, 60G99.

Key words and phrases. Infinitely divisible process, Lévy measure on path spaces, isomorphism identities, stochastic integral representations, series representations, Dynkin isomorphism theorem.

COUPLING IN THE HEISENBERG GROUP AND ITS APPLICATIONS TO GRADIENT ESTIMATES

BY SAYAN BANERJEE*,1, MARIA GORDINA†,2 AND PHANUEL MARIANO†,3

University of North Carolina* and University of Connecticut†

We construct a non-Markovian coupling for hypoelliptic diffusions which are Brownian motions in the three-dimensional Heisenberg group. We then derive properties of this coupling such as estimates on the coupling rate, and upper and lower bounds on the total variation distance between the laws of the Brownian motions. Finally, we use these properties to prove gradient estimates for harmonic functions for the hypoelliptic Laplacian which is the generator of Brownian motion in the Heisenberg group.

REFERENCES

MSC2010 subject classifications. Primary 60D05; secondary 60H30.

Key words and phrases. Coupling, Karhunen–Loeve expansion, non-Markovian coupling, Heisenberg group, total variation distance, gradient estimate, sub-Riemannian manifold, Brownian motion.

We consider random walks with independent but not necessarily identical distributed increments. Assuming that the increments satisfy the well-known Lindeberg condition, we investigate the asymptotic behaviour of first-passage times over moving boundaries. Furthermore, we prove that a properly rescaled random walk conditioned to stay above the boundary up to time n converges, as $n \to \infty$, towards the Brownian meander.

REFERENCES

CANONICAL SUPERMARTINGALE COUPLINGS

BY MARCEL NUTZ¹ AND FLORIAN STEBEGG

Columbia University

Two probability distributions \(\mu \) and \(\nu \) in second stochastic order can be coupled by a supermartingale, and in fact by many. Is there a canonical choice? We construct and investigate two couplings which arise as optimizers for constrained Monge–Kantorovich optimal transport problems where only supermartingales are allowed as transports. Much like the Hoeffding–Fréchet coupling of classical transport and its symmetric counterpart, the antitone coupling, these can be characterized by order-theoretic minimality properties, as simultaneous optimal transports for certain classes of reward (or cost) functions, and through no-crossing conditions on their supports; however, our two couplings have asymmetric geometries. Remarkably, supermartingale optimal transport decomposes into classical and martingale transport in several ways.

REFERENCES

MSC2010 subject classifications. 60G42, 49N05.

Key words and phrases. Coupling, optimal transport, Spence–Mirrlees condition.

A WEAK VERSION OF PATH-DEPENDENT FUNCTIONAL ITÔ CALCULUS

BY DORIVAL LEÃO*, ALBERTO OHASHI†,1 AND ALEXANDRE B. SIMAS†

Universidade de São Paulo* and Universidade Federal da Paraíba†

We introduce a variational theory for processes adapted to the multidimensional Brownian motion filtration that provides a differential structure allowing to describe infinitesimal evolution of Wiener functionals at very small scales. The main novel idea is to compute the “sensitivities” of processes, namely derivatives of martingale components and a weak notion of infinitesimal generator, via a finite-dimensional approximation procedure based on controlled inter-arrival times and approximating martingales. The theory comes with convergence results that allow to interpret a large class of Wiener functionals beyond semimartingales as limiting objects of differential forms which can be computed path wisely over finite-dimensional spaces. The theory reveals that solutions of BSDEs are minimizers of energy functionals w.r.t. Brownian motion driving noise.

REFERENCES

MSC2010 subject classifications. Primary 60H07; secondary 60H25.
Key words and phrases. Stochastic calculus of variations, functional Itô calculus.

LOWER BOUNDS FOR THE SMALLEST SINGULAR VALUE OF STRUCTURED RANDOM MATRICES

BY NICHOLAS COOK

University of California, Los Angeles

We obtain lower tail estimates for the smallest singular value of random matrices with independent but nonidentically distributed entries. Specifically, we consider $n \times n$ matrices with complex entries of the form

$$M = A \circ X + B = (a_{ij} \xi_{ij} + b_{ij}),$$

where $X = (\xi_{ij})$ has i.i.d. centered entries of unit variance and A and B are fixed matrices. In our main result, we obtain polynomial bounds on the smallest singular value of M for the case that A has bounded (possibly zero) entries, and $B = Z\sqrt{n}$ where Z is a diagonal matrix with entries bounded away from zero. As a byproduct of our methods we can also handle general perturbations B under additional hypotheses on A, which translate to connectivity hypotheses on an associated graph. In particular, we extend a result of Rudelson and Zeitouni for Gaussian matrices to allow for general entry distributions satisfying some moment hypotheses. Our proofs make use of tools which (to our knowledge) were previously unexploited in random matrix theory, in particular Szemerédi’s regularity lemma, and a version of the restricted invertibility theorem due to Spielman and Srivastava.

REFERENCES

MSC2010 subject classifications. Primary 60B20; secondary 15B52.
Key words and phrases. Random matrices, condition number, regularity lemma, metric entropy.

THE SCALING LIMITS OF THE MINIMAL SPANNING TREE AND INVASION PERCOLATION IN THE PLANE

BY CHRISTOPHE GARBAN*,1, GÁBOR PETE†,‡,2 AND ODED SCHRAMM§

Université Lyon 1*, Hungarian Academy of Sciences†,
Budapest University of Technology and Economics‡ and Microsoft Research§

We prove that the Minimal Spanning Tree and the Invasion Percolation Tree on a version of the triangular lattice in the complex plane have unique scaling limits, which are invariant under rotations, scalings, and, in the case of the MST, also under translations. However, they are not expected to be conformally invariant. We also prove some geometric properties of the limiting MST. The topology of convergence is the space of spanning trees introduced by Aizenman et al. [Random Structures Algorithms 15 (1999) 319–365], and the proof relies on the existence and conformal covariance of the scaling limit of the near-critical percolation ensemble, established in our earlier works.

REFERENCES

MSC2010 subject classifications. Primary 60K35, 82B27, 82B43, 05C05; secondary 60D05, 81T27, 81T40.

Key words and phrases. Minimal spanning tree, invasion percolation, critical and near-critical percolation, scaling limit, conformal invariance, Hausdorff dimension.

QUENCHED CENTRAL LIMIT THEOREM FOR RANDOM WALKS
IN DOUBLY STOCHASTIC RANDOM ENVIRONMENT

BY BÁLINT TÓTH

University of Bristol and Rényi Institute, Budapest

We prove the quenched version of the central limit theorem for the displacement of a random walk in doubly stochastic random environment, under the H^{-1}-condition, with slightly stronger, $L^{2+\varepsilon}$ (rather than L^2) integrability condition on the stream tensor. On the way we extend Nash’s moment bound to the nonreversible, divergence-free drift case, with unbounded ($L^{2+\varepsilon}$) stream tensor. This paper is a sequel of [Ann. Probab. 45 (2017) 4307–4347] and relies on technical results quoted from there.

REFERENCES

MSC2010 subject classifications. 60F05, 60G99, 60K37.

Key words and phrases. Random walk in random environment, quenched central limit theorem, Nash bounds.

THE KLS ISOPERIMETRIC CONJECTURE FOR GENERALIZED ORLICZ BALLS

BY ALEXANDER V. KOLESNIKOV1 AND EMMANUEL MILMAN2

National Research University Higher School of Economics, Moscow and Technion—I.I.T.

What is the optimal way to cut a convex bounded domain K in Euclidean space $(\mathbb{R}^n, |·|)$ into two halves of equal volume, so that the interface between the two halves has least surface area? A conjecture of Kannan, Lovász and Simonovits asserts that, if one does not mind gaining a universal numerical factor (independent of n) in the surface area, one might as well dissect K using a hyperplane. This conjectured essential equivalence between the former nonlinear isoperimetric inequality and its latter linear relaxation, has been shown over the last two decades to be of fundamental importance to the understanding of volume-concentration and spectral properties of convex domains. In this work, we address the conjecture for the subclass of generalized Orlicz balls

$$K = \left\{ x \in \mathbb{R}^n: \sum_{i=1}^n V_i(x_i) \leq E \right\},$$

confirming its validity for certain levels $E \in \mathbb{R}$ under a mild technical assumption on the growth of the convex functions V_i at infinity [without which we confirm the conjecture up to a log$(1 + n)$ factor]. In sharp contrast to previous approaches for tackling the KLS conjecture, we emphasize that no symmetry is required from K. This significantly enlarges the subclass of convex bodies for which the conjecture is confirmed.

REFERENCES

MSC2010 subject classifications. 60D05, 52A23, 46B07.

Key words and phrases. KLS conjecture, spectral-gap, convex bodies, generalized Orlicz balls.

THE ANNALS
of
PROBABILITY

AN OFFICIAL JOURNAL OF THE
INSTITUTE OF MATHEMATICAL STATISTICS

VOLUME 46

2018
CONTENTS OF VOLUME 46

Articles

ALDOUS, DAVID. Random partitions of the plane via Poissonian coloring and a self-similar process of coalescing planar partitions. 2000–2037

ANDRES, SEBASTIAN, CHIARINI, ALBERTO, DEUSCHEL, JEAN-DOMINIQUE AND SLOWIK, MARTIN. Quenched invariance principle for random walks with time-dependent ergodic degenerate weights. 302–336

ARAPONSTATHIS,ARI, BISWAS, ANUP AND BORKAR, VIVEK S. Controlled equilibrium selection in stochastically perturbed dynamics. 2749–2799

BAIK, JINHO, BARRAQUAND, GUILLAUME, CORWIN, IVAN AND SUIDAN, TOUFIC. Pfaffian Schur processes and last passage percolation in a half-quadrant. 3015–3089

BANERJEE, SAYAN, GORDINA, MARIA AND MARIANO, PHANUEL. Coupling in the Heisenberg group and its applications to gradient estimates. 3275–3312

BARBOUR, A. D., LUCZAK, M. J. AND XIA, A. Multivariate approximation in total variation, II: Discrete normal approximation. 1405–1440

BARBU, VIOREL, RÖCKNER, MICHAEL AND ZHANG, DENG. Optimal bilinear control of nonlinear stochastic Schrödinger equations driven by linear multiplicative noise. 1957–1999

BARRAQUAND, GUILLAUME, CORWIN, IVAN, SUIDAN, TOUFIC AND BAIK, JINHO. Pfaffian Schur processes and last passage percolation in a half-quadrant. 3015–3089

BASSINO, FRÉDÉRIQUE, BOUVEL, MATHILDE, FÉRAY, VALENTIN, GERIN, LUCAS AND PIERROT, ADELINE. The Brownian limit of separable permutations. 2134–2189

BEFFARA, VINCENT, CHHITA, SUNIL AND JOHANSSON, KURT. Airy point process at the liquid-gas boundary. 2973–3013

BENJAMINI, ITAI, PAQUETTE, ELLIOT AND PFESSER, JOSHUA. Anchored expansion, speed and the Poisson–Voronoi tessellation in symmetric spaces. 1917–1956

BERESTYCKI, NATHANÆL, LUBETZKY, EYAL, PERES, YUVAL AND SLY, ALLAN. Random walks on the random graph. 456–490

BERTOIN, JEAN, CURIEN, NICOLAS AND KORTCHEMSKI, IGOR. Random planar maps and growth-fragmentations. 207–260
BINOTTO, GIULIA, NOURDIN, IVAN AND NUALART, DAVID. Weak symmetric integrals with respect to the fractional Brownian motion .. 2243–2267

BISWAS, ANUP, BORKAR, VIVEK S. AND ARAPOSTATHIS, ARI. Controlled equilibrium selection in stochastically perturbed dynamics .. 2749–2799

BOLLEY, FRANÇOIS, GENTIL, IVAN AND GUILLIN, ARNAUD. Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp–Lieb inequalities 261–301

BORDENAVE, CHARLES, CAPUTO, PIETRO, CHAFAI, DJALIL AND TIKHOMIROV, Konstantin. On the spectral radius of a random matrix: An upper bound without fourth moment 2268–2286

BORDENAVE, CHARLES, LELARGE, MARC AND MASSOULIÉ, LAURENT. Nonbacktracking spectrum of random graphs: Community detection and nonregular Ramanujan graphs 1–71

BORGES, CHRISTIAN, CHAYES, JENNIFER T., COHN, HENRY AND ZHAO, YUFEI. An L^p theory of sparse graph convergence II: LD convergence, quotients and right convergence 337–396

BORKAR, VIVEK S., ARAPOSTATHIS, ARI AND BISWAS, ANUP. Controlled equilibrium selection in stochastically perturbed dynamics .. 2749–2799

BOUVEL, MATHILDE, FÉRAY, VALENTIN, GERIN, LUCAS, PIERROT, ADELINE AND BASSINO, FRÉDÉRIQUE. The Brownian limit of separable permutations 2134–2189

BUFETOV, ALEXANDER I. Quasi-symmetries of determinantal point processes ... 956–1003

CAMMAROTA, VALENTINA AND MARINUCCI, DOMENICO. A quantitative central limit theorem for the Euler–Poincaré characteristic of random spherical eigenfunctions 3188–3228

CANNIZZARO, GIUSEPPE AND CHOUK, KHALIL. Multidimensional SDEs with singular drift and universal construction of the polymer measure with white noise potential 1710–1763

CAPUTO, PIETRO, CHAFAI, DJALIL, TIKHOMIROV, Konstantin AND BORDENAVE, CHARLES. On the spectral radius of a random matrix: An upper bound without fourth moment 2268–2286

CATELLIER, RÉMI AND CHOUK, KHALIL. Paracontrolled distributions and the 3-dimensional stochastic quantization equation... 2621–2679

CHAFAI, DJALIL, TIKHOMIROV, Konstantin, BORDENAVE, CHARLES AND CAPUTO, PIETRO. On the spectral radius of a random matrix: An upper bound without fourth moment 2268–2286
CHAMPAGNAT, NICOLAS AND JABIN, PIERRE-EMMANUEL. Strong solutions to stochastic differential equations with rough coefficients .. 1498–1541

CHAYES, JENNIFER T., COHN, HENRY, ZHAO, YUEFEI AND BORG, CHRISTIAN. An L^p theory of sparse graph convergence II: LD convergence, quotients and right convergence 337–396

CHHITA, SUNIL, JOHANSSON, KURT AND BEFFARA, VINCENT. Airy point process at the liquid-gas boundary 2973–3013

CHIARINI, ALBERTO, DEUSCHEL, JEAN-DOMINIQUE, SLOWIK, MARTIN AND ANDRES, SEBASTIAN. Quenched invariance principle for random walks with time-dependent ergodic degenerate weights. .. 302–336

CHOUK, KHALIL AND CANNIZZARO, GIUSEPPE. Multidimensional SDEs with singular drift and universal construction of the polymer measure with white noise potential 1710–1763

CHOUK, KHALIL AND CATELLIER, RÉMI. Paracontrolled distributions and the 3-dimensional stochastic quantization equation 2621–2679

COHN, HENRY, ZHAO, YUEFEI, BORG, CHRISTIAN AND CHAYES, JENNIFER T. An L^p theory of sparse graph convergence II: LD convergence, quotients and right convergence 337–396

COLLAMORE, JEFFREY F. AND MENTEMEIER, SEBASTIAN. Large excursions and conditioned laws for recursive sequences generated by random matrices ... 2064–2120

COOK, NICHOLAS. Lower bounds for the smallest singular value of structured random matrices ... 3442–3500

COOK, NICHOLAS, GOLDSTEIN, LARRY AND JOHNSON, TOBIAS. Size biased couplings and the spectral gap for random regular graphs ... 72–125

CORWIN, IVAN, SUIDAN, TOUFIC, BAIK, JINHO AND BARRAQUAND, GUILLAUME. Pfaffian Schur processes and last passage percolation in a half-quadrant 3015–3089

COSSO, ANDREA, FEDERICO, SALVATORE, GOZZI, FAUSTO, ROSESTOLATO, MAURO AND TOUZI, NIZAR. Path-dependent equations and viscosity solutions in infinite dimension 126–174

CURIEN, NICOLAS, KORTCHEMSKI, IGOR AND BERTOIN, JEAN. Random planar maps and growth-fragmentations 207–260

DENISOV, DENIS, SAKHANENKO, ALEXANDER AND WACHTEL, VITALI. First-passage times for random walks with nonidentically distributed increments .. 3313–3350

DEUSCHEL, JEAN-DOMINIQUE, SLOWIK, MARTIN, ANDRES, SEBASTIAN AND CHIARINI, ALBERTO. Quenched invariance
<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principle for random walks with time-dependent ergodic degenerate weights</td>
<td>302–336</td>
</tr>
<tr>
<td>Ding, Jian and Shen, Jianfei. Three favorite sites occurs infinitely often for one-dimensional simple random walk</td>
<td>2545–2561</td>
</tr>
<tr>
<td>Döbler, Christian and Peccati, Giovanni. The fourth moment theorem on the Poisson space</td>
<td>1878–1916</td>
</tr>
<tr>
<td>Duits, Maurice. On global fluctuations for non-colliding processes</td>
<td>1279–1350</td>
</tr>
<tr>
<td>Eskenazis, Alexandros, Nayar, Piotr and Tkocz, Tomasz. Gaussian mixtures: Entropy and geometric inequalities</td>
<td>2908–2945</td>
</tr>
<tr>
<td>Feng, De-Jun, Järvenpää, Esa, Järvenpää, Maarit and Suomala, Ville. Dimensions of random covering sets in Riemann manifolds</td>
<td>1542–1596</td>
</tr>
<tr>
<td>Féray, Valentin, Gerin, Lucas, Pierrot, Adeline, Bassino, Frédérique and Bouvel, Mathilde. The Brownian limit of separable permutations</td>
<td>2134–2189</td>
</tr>
<tr>
<td>Garban, Christophe, Pete, Gábor and Schramm, Oded. The scaling limits of the Minimal Spanning Tree and Invasion Percolation in the plane</td>
<td>3501–3557</td>
</tr>
<tr>
<td>Gentil, Ivan, Guillin, Arnaud and Bolley, François. Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp–Lieb inequalities</td>
<td>261–301</td>
</tr>
<tr>
<td>Gerin, Lucas, Pierrot, Adeline, Bassino, Frédérique, Bouvel, Mathilde and Féray, Valentin. The Brownian limit of separable permutations</td>
<td>2134–2189</td>
</tr>
<tr>
<td>Gess, Benjamin and Hofmanová, Martina. Well-posedness and regularity for quasilinear degenerate parabolic-hyperbolic SPDE</td>
<td>2495–2544</td>
</tr>
<tr>
<td>Gladkich, Alexey and Peled, Ron. On the cycle structure of Mallows permutations</td>
<td>1114–1169</td>
</tr>
<tr>
<td>Goldstein, Larry, Johnson, Tobias and Cook, Nicholas. Size biased couplings and the spectral gap for random regular graphs</td>
<td>72–125</td>
</tr>
<tr>
<td>Gordina, Maria, Mariano, Phanuel and Banerjee, Sayan. Coupling in the Heisenberg group and its applications to gradient estimates</td>
<td>3275–3312</td>
</tr>
</tbody>
</table>
GORIN, VADIM AND SHKOLNIKOV, MYKHAYLO. Stochastic Airy semigroup through tridiagonal matrices 2287–2344

GOZZI, FAUSTO, ROSESTOLATO, MAURO, TOUZI, NIZAR, COSSO, ANDREA AND FEDERICO, SALVATORE. Path-dependent equations and viscosity solutions in infinite dimension 126–174

GRAMA, ION, LAUVERGNAT, RONAN AND LE PAGE, ÉMILE. Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption 1807–1877

GUILLIN, ARNAUD, BOLLEY, FRANÇOIS AND GENTIL, IVAN. Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp–Lieb inequalities 261–301

HAIRER, M. AND MATETSKI, K. Discretisations of rough stochastic PDEs 1651–1709

HAIRER, MARTIN, IYER, GAUTAM, KORALOV, LEONID, NOVIKOV, ALEXEI AND PAJOR-GYULAI, ZSOLT. A fractional kinetic process describing the intermediate time behaviour of cellular flows 897–955

HUTCHCROFT, TOM. Interlacements and the wired uniform spanning forest 1170–1200

IYER, GAUTAM, KORALOV, LEONID, NOVIKOV, ALEXEI, PAJOR-GYULAI, ZSOLT AND HAIRER, MARTIN. A fractional kinetic process describing the intermediate time behaviour of cellular flows 897–955

JABIN, PIERRE-EMMANUEL AND CHAMPAGNAT, NICOLAS. Strong solutions to stochastic differential equations with rough coefficients 1498–1541

JÄRVENPÄÄ, ESA, JÄRVENPÄÄ, MAARIT, SUOMALA, VILLE AND FENG, DE-JUN. Dimensions of random covering sets in Riemann manifolds 1542–1596

JÄRVENPÄÄ, MAARIT, SUOMALA, VILLE, FENG, DE-JUN AND JÄRVENPÄÄ, ESA. Dimensions of random covering sets in Riemann manifolds 1542–1596

JOHANSSON, KURT, BEFFARA, VINCENT AND CHHITA, SUNIL. Airy point process at the liquid-gas boundary 2973–3013
LUCZAK, M. J., XIA, A. AND BARBOUR, A. D. Multivariate approximation in total variation, II: Discrete normal approximation 1405–1440
MARIANO, PHANUEL, BANERJEE, SAYAN AND GORDINA, MARIA. Coupling in the Heisenberg group and its applications to gradient estimates ... 3275–3312
MARINELLI, CARLO AND SCARPA, LUCA. A variational approach to dissipative SPDEs with singular drift 1455–1497
MARINUCCI, DOMENICO AND CAMMAROTA, VALENTINA. A quantitative central limit theorem for the Euler–Poincaré characteristic of random spherical eigenfunctions 3188–3228
MARTINSSON, ANDERS. First-passage percolation on Cartesian power graphs ... 1004–1041
Mentonemeier, Sebastian and Collamore, Jeffrey F. Large excursions and conditioned laws for recursive sequences generated by random matrices ... 2064–2120
MiLMAN, EMANUEL AND KOLESNIKOV, ALEXANDER V. The KLS isoperimetric conjecture for generalized Orlicz balls 3578–3615
NAYAR, PIOTR, TKOCZ, TOMASZ AND ESKENAZIS, ALEXANDROS. Gaussian mixtures: Entropy and geometric inequalities 2908–2945
NEUMAN, EYAL. Pathwise uniqueness of the stochastic heat equation with spatially inhomogeneous white noise 3090–3187
NGUYEN, OANH, VU, VAN AND DO, YEN. Roots of random polynomials with coefficients of polynomial growth 2407–2494
NOURDIN, IVAN, NUALART, DAVID AND BINOTTO, GIULIA. Weak symmetric integrals with respect to the fractional Brownian motion .. 2243–2267
NOVIKOV, ALEXEI, PAJOR-GYULAI, ZSOLT, HAIRER, MARTIN, IYER, GAUTAM AND KORALOV, LEONID. A fractional kinetic process describing the intermediate time behaviour of cellular flows .. 897–955
NUALART, DAVID, BINOTTO, GIULIA AND NOURDIN, IVAN. Weak symmetric integrals with respect to the fractional Brownian motion .. 2243–2267
NUTZ, MARCEL AND STEBEGG, FLORIAN. Canonical supermartingale couplings .. 3351–3398

OHASHI, ALBERTO, SIMAS, ALEXANDRE B. AND LEÃO, DORIVAL. A weak version of path-dependent functional Itô calculus 3399–3441

ORTGIESE, MARCEL, VÖLLERING, FLORIAN AND HAMMER, MATTHIAS. A new look at duality for the symbiotic branching model .. 2800–2862

PAJOR-GYULAI, ZSOLT, HAIRER, MARTIN, IYER, GAUTAM, KORALOV, LEONID AND NOVIKOV, ALEXEI. A fractional kinetic process describing the intermediate time behaviour of cellular flows ... 897–955

PAL, SOUMIK AND WONG, TING-KAM LEONARD. Exponentially concave functions and a new information geometry 1070–1113

PANCHENKO, DMITRY. Free energy in the mixed p-spin models with vector spins .. 865–896

PANCHENKO, DMITRY. Free energy in the Potts spin glass 829–864

PAOURIS, GRIGORIS AND VALETTAS, PETROS. A Gaussian small deviation inequality for convex functions 1441–1454

PAQUETTE, ELLIOT, PFEFFER, JOSHUA AND BENJAMINI, ITAI. Anchored expansion, speed and the Poisson–Voronoi tessellation in symmetric spaces ... 1917–1956

PECCATI, GIOVANNI AND DÖBLER, CHRISTIAN. The fourth moment theorem on the Poisson space............................... 1878–1916

PEIGNÉ, M., PHAM, C. AND LE PAGE, E. The survival probability of a critical multi-type branching process in i.i.d. random environment ... 2946–2972

PELED, RON AND GLADKICH, ALEXEY. On the cycle structure of Mallows permutations ... 1114–1169

PERES, YUVAL, SLY, ALLAN, BERESTYCKI, NATHANAËL AND LUBETZKY, EYAL. Random walks on the random graph 456–490

PETE, GÁBOR, SCHRAMM, ODED AND GARBAN, CHRISTOPHE. The scaling limits of the Minimal Spanning Tree and Invasion Percolation in the plane .. 3501–3557

PFEFFER, JOSHUA, BENJAMINI, ITAI AND PAQUETTE, ELLIOT. Anchored expansion, speed and the Poisson–Voronoi tessellation in symmetric spaces ... 1917–1956

PILLAI, NATESH S. AND SMITH, AARON. On the mixing time of Kac’s walk and other high-dimensional Gibbs samplers with constraints ... 2345–2399

PHAM, C., LE PAGE, E. AND PEIGNÉ, M. The survival probability of a critical multi-type branching process in i.i.d. random environment .. 2946–2972
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pierrot, Adeline, Bassino, Frédérique, Bouvel, Mathilde, Féray, Valentin and Gerin, Lucas</td>
<td>The Brownian limit of separable permutations</td>
<td>2134–2189</td>
</tr>
<tr>
<td>Possamai, Dylan, Tan, Xiaolu and Zhou, Chao</td>
<td>Stochastic control for a class of nonlinear kernels and applications</td>
<td>551–603</td>
</tr>
<tr>
<td>Rembart, Franz and Winkel, Matthias</td>
<td>Recursive construction of continuum random trees</td>
<td>2715–2748</td>
</tr>
<tr>
<td>Röckner, Michael, Zhang, Deng and Barbu, Viorel</td>
<td>Optimal bilinear control of nonlinear stochastic Schrödinger equations driven by linear multiplicative noise</td>
<td>1957–1999</td>
</tr>
<tr>
<td>Rosestolato, Mauro, Touzi, Nizar, Cosso, Andrea, Federico, Salvatore and Gozzi, Fausto</td>
<td>Path-dependent equations and viscosity solutions in infinite dimension</td>
<td>126–174</td>
</tr>
<tr>
<td>Rosiński, Jan</td>
<td>Representations and isomorphism identities for infinitely divisible processes</td>
<td>3229–3274</td>
</tr>
<tr>
<td>Roy, Parthanil and Sarkar, Sourav</td>
<td>Stable random fields indexed by finitely generated free groups</td>
<td>2680–2714</td>
</tr>
<tr>
<td>Sakhnenko, Alexander, Wachtel, Vitali and Denisov, Denis</td>
<td>First-passage times for random walks with nonidentically distributed increments</td>
<td>3313–3350</td>
</tr>
<tr>
<td>Sarkar, Sourav and Roy, Parthanil</td>
<td>Stable random fields indexed by finitely generated free groups</td>
<td>2680–2714</td>
</tr>
<tr>
<td>Scarpa, Luca and Marinelli, Carlo</td>
<td>A variational approach to dissipative SPDEs with singular drift</td>
<td>1455–1497</td>
</tr>
<tr>
<td>Schramm, Oded, Garban, Christophe and Pete, Gábor</td>
<td>The scaling limits of the Minimal Spanning Tree and Invasion Percolation in the plane</td>
<td>3501–3557</td>
</tr>
<tr>
<td>Seo, Insuk</td>
<td>Scaling limit of two-component interacting Brownian motions</td>
<td>2038–2063</td>
</tr>
<tr>
<td>Shen, Jianfei and Ding, Jian</td>
<td>Three favorite sites occurs infinitely often for one-dimensional simple random walk</td>
<td>2545–2561</td>
</tr>
<tr>
<td>Shiraishi, Daisuke</td>
<td>Growth exponent for loop-erased random walk in three dimensions</td>
<td>687–774</td>
</tr>
<tr>
<td>Shkolnikov, Mykhaylo and Gorin, Vadim</td>
<td>Stochastic Airy semigroup through tridiagonal matrices</td>
<td>2287–2344</td>
</tr>
<tr>
<td>Shkolnikov, Mykhaylo and Kolli, Praveen</td>
<td>SPDE limit of the global fluctuations in rank-based models</td>
<td>1042–1069</td>
</tr>
<tr>
<td>Sidoravicius, Vladas and Kious, Daniel</td>
<td>Phase transition for the Once-reinforced random walk on \mathbb{Z}^d-like trees</td>
<td>2121–2133</td>
</tr>
<tr>
<td>Simas, Alexandre B., Lêao, Dorival and Ohashi, Alberto</td>
<td>A weak version of path-dependent functional Itô calculus</td>
<td>3399–3441</td>
</tr>
</tbody>
</table>
SLOWIK, MARTIN, ANDRES, SEBASTIAN, CHIARINI, ALBERTO AND DEUSCHEL, JEAN-DOMINIQUE. Quenched invariance principle for random walks with time-dependent ergodic degenerate weights .. 302–336

SLY, ALLAN, BERESTYCKI, NATHANAËL, LUBETZKY, EYAL AND PERES, YUVAL. Random walks on the random graph 456–490

SMITH, AARON AND PILLAI, NATESH S. On the mixing time of Kac’s walk and other high-dimensional Gibbs samplers with constraints ... 2345–2399

STAUFFER, ALEXANDRE AND TAGGI, LORENZO. Critical density of activated random walks on transient graphs 2190–2220

STEBEGG, FLORIAN AND NUTZ, MARCEL. Canonical supermartingale couplings ... 3351–3398

SUIDAN, TOUFIC, BAIK, JINHO, BARRAUDQUAND, GUILLAUME AND CORWIN, IVAN. Pfaffian Schur processes and last passage percolation in a half-quadrant .. 3015–3089

SUOMALA, VILLE, FENG, DE-JUN, JÄRVENPÄÄ, ESA AND JÄRVENPÄÄ, MAARIT. Dimensions of random covering sets in Riemann manifolds ... 1542–1596

TAGGI, LORENZO AND STAUFFER, ALEXANDRE. Critical density of activated random walks on transient graphs 2190–2220

TAN, XIAOLU, ZHOU, CHAO AND POSSAMAÏ, DYLAN. Stochastic control for a class of nonlinear kernels and applications 551–603

TANG, WENPIN AND TSAI, LI-CHENG. Optimal surviving strategy for drifted Brownian motions with absorption 1597–1650

TARRAGO, PIERRE. Zigzag diagrams and Martin boundary 2562–2620

TIKHOMIROV, KONSTANTIN, BORDENAVE, CHARLES, CAPUTO, PIETRO AND CHAFAÏ, DJALIL. On the spectral radius of a random matrix: An upper bound without fourth moment 2268–2286

TIMÁR, ÁDÁM. Indistinguishability of the components of random spanning forests ... 2221–2242

TKOcz, TOMasz, ESKENAZIS, ALEXANDROS AND NAYAR, PIOTR. Gaussian mixtures: Entropy and geometric inequalities 2908–2945

TÓTH, BÁLINT. Quenched central limit theorem for random walks in doubly stochastic random environment 3558–3577

TOUZI, NIZAR, COSSO, ANDREA, FEDERICO, SALVATORE, GOZZI, FAUSTO AND ROSESTOLATO, MAURO. Path-dependent equations and viscosity solutions in infinite dimension 126–174

TSAI, LI-CHENG AND TANG, WENPIN. Optimal surviving strategy for drifted Brownian motions with absorption 1597–1650
VALETTAS, PETROS AND PAOURIS, GRIGORIS. A Gaussian small deviation inequality for convex functions 1441–1454

VAN HANDEL, RAMON. Chaining, interpolation and convexity II: The contraction principle 1764–1805

VÖLLERING, FLORIAN, HAMMER, MATTHIAS AND ORTGIESE, MARCEL. A new look at duality for the symbiotic branching model ... 2800–2862

VU, VAN, DO, YEN AND NGUYEN, OANH. Roots of random polynomials with coefficients of polynomial growth 2407–2494

WACHTEL, VITALI, DENISOV, DENIS AND SAKHANENKO, ALEXANDER. First-passage times for random walks with nonidentically distributed increments .. 3313–3350

WINKEL, MATTHIAS AND REMBART, FRANZ. Recursive construction of continuum random trees 2715–2748

WONG, TING-KAM LEONARD AND PAL, SOUMIK. Exponentially concave functions and a new information geometry 1070–1113

WU, HAO. Alternating arm exponents for the critical planar Ising model ... 2863–2907

XIA, A., BARBOUR, A. D. AND LUCZAK, M. J. Multivariate approximation in total variation, II: Discrete normal approximation 1405–1440

XING, HAO AND ŽITKOVIČ, GORDAN. A class of globally solvable Markovian quadratic BSDE systems and applications 491–550

ZHANG, DENG, BARBU, VIOREL AND RÖCKNER, MICHAEL. Optimal bilinear control of nonlinear stochastic Schrödinger equations driven by linear multiplicative noise 1957–1999

ZHAO, YUEFEI, BORG, CHRISTIAN, CHAYES, JENNIFER T. AND COHN, HENRY. An L^p theory of sparse graph convergence II: LD convergence, quotients and right convergence 337–396

ZHOU, CHAO, POSSAMAÏ, DYLAN AND TAN, XIAOLU. Stochastic control for a class of nonlinear kernels and applications 551–603

ZHU, RONGCHAN AND ZHU, XIANGCHAN. Lattice approximation to the dynamical Φ^4_3 model .. 397–455

ZHU, XIANGCHAN AND ZHU, RONGCHAN. Lattice approximation to the dynamical Φ^4_3 model .. 397–455
ŽITKOVIĆ, GORDAN AND XING, HAO. A class of globally solvable Markovian quadratic BSDE systems and applications 491–550

Errata

LYONS, RUSSELL. Distance covariance in metric spaces 2400–2405
The Annals of Probability

Vol. 47 January 2019 No. 1

Articles

A Stratonovich–Skorohod integral formula for Gaussian rough paths
THOMAS CASS AND NENGLI LIM

Berry–Esseen bounds of normal and nonnormal approximation for unbounded exchangeable pairs
QI-MAN SHAO AND ZHUO-SONG ZHANG

Structure of optimal martingale transport plans in general dimensions
NASSIF GHOSSOUB, YOUNG-HEON KIM AND TONGSEOK LIM

Regularization by noise and flows of solutions for a stochastic heat equation
OLEG BUTKOFSKY AND LEONID MYTNIK

Brownian motion on some spaces with varying dimension
ZHEN-QING CHEN AND SHUWEN LOU

Rényi divergence and the central limit theorem
S. G. BOBKOV, G. P. CHISTYAKOV AND F. GÖTZE

Towards a universality picture for the relaxation to equilibrium of kinetically constrained models
FABIO MARTINELLI AND CRISTINA TONINELLI

The spectral gap of dense random regular graphs
KONSTANTIN TIKHOMIROV AND PIERRE YOUSSEF

Canonical RDEs and general semimartingales as rough paths
ILYA CHEVYREV AND PETER K. FRIZ

Rate of convergence to equilibrium of fractional driven stochastic differential equations with rough multiplicative noise
AURELIEN DEYA, FABIEN PANLOUP AND SAMY TINDEL

Global solutions to stochastic reaction–diffusion equations with super-linear drift and multiplicative noise
ROBERT C. DALANG, DAVAR KHOSHNEVISAN AND TUSHENG ZHANG

Component sizes for large quantum Erdős–Rényi graph near criticality
AMIR DEMBO, ANNA LEVIT AND SREEKAR VADLAMANI
A Basic Course in Measure and Probability: Theory for Applications

Ross Leadbetter, Stamatis Cambanis, and Vladas Pipiras

Originating from the authors’ own graduate course at the University of North Carolina, this material has been thoroughly tried and tested over many years, making the book perfect for a two-term course or for self-study. It provides a concise introduction that covers all of the measure theory and probability most useful for statisticians, including Lebesgue integration, limit theorems in probability, martingales, and some theory of stochastic processes. Readers can test their understanding of the material through the 300 exercises provided.

The book is especially useful for graduate students in statistics and related fields of application (biostatistics, econometrics, finance, meteorology, machine learning, and so on) who want to shore up their mathematical foundation. The authors establish common ground for students of varied interests which will serve as a firm ‘take-off point’ for them as they specialize in areas that exploit mathematical machinery.

www.cambridge.org/9781107652521