THE ANNALS

of

APPLIED

PROBABILITY

AN OFFICIAL JOURNAL OF THE
INSTITUTE OF MATHEMATICAL STATISTICS

Articles

On the asymptotic optimality of the comb strategy for prediction with expert advice
ERHAN BAYRAKTAR, IBRAHIM EKREN AND YILI ZHANG 2517

Markov selection for the stochastic compressible Navier–Stokes system
DOMINIC BREIT, EDUARD FEIREISL AND MARTINA HOFMANOVÁ 2547

Stochastic methods for the neutron transport equation I: Linear semigroup asymptotics
EMMA HORTON, ANDREAS E. KYPRIANOU AND DENIS VILLEMONAIS 2573

A second order analysis of McKean–Vlasov semigroups
M. ARNAUDON AND P. DEL MORAL 2613

Utility maximization via decoupling fields
ALEXANDER FROMM AND PETER IMKELLER 2665

Sample path large deviations for Lévy processes and random walks with Weibull increments
MIHAIL BAZHBA, JOSE BLANCHET, CHANG-HAN RHEE AND BERT ZWART 2695

From tick data to semimartingales
YACINE AIT-SAHALIA AND JEAN JACOD 2740

Applications of mesoscopic CLTs in random matrix theory
BENJAMIN LANDON AND PHILIPPE SOSOE 2769

How fragile are information cascades?
YUVAL PERES, MIKLÓS Z. RÁCZ, ALLAN SLY AND IZABELLA STUHL 2796

Stochastic methods for the neutron transport equation II: Almost sure growth
SIMON C. HARRIS, EMMA HORTON AND ANDREAS E. KYPRIANOU 2815

Bulk eigenvalue fluctuations of sparse random matrices
YUKUN HE 2846

Extinction time for the weaker of two competing SIS epidemics
FABIO LOPES AND MALWINA LUCZAK 2880

Modelling information flows by Meyer-σ-fields in the singular stochastic control problem of irreversible investment
PETER BANK AND DAVID BESSLICH 2923

Splitting algorithms for rare event simulation over long time intervals
ANNE BUIJSROGGE, PAUL DUPUIS AND MICHAEL SNARSKI 2963

Homogeneous mappings of regularly varying vectors
PIOTR DYSZEWSKI AND THOMAS MIKOSCH 2999
The purpose of the Institute is to foster the development and dissemination of the theory and applications of statistics and probability.

IMS OFFICERS

President: Regina Y. Liu, Department of Statistics, Rutgers University, Piscataway, New Jersey 08854-8019, USA

President-Elect: Krzysztof Burdzy, Department of Mathematics, University of Washington, Seattle, Washington 98195-4350, USA

Past President: Susan Murphy, Department of Statistics, Harvard University, Cambridge, Massachusetts 02138-2901, USA

Executive Secretary: Edsel Peña, Department of Statistics, University of South Carolina, Columbia, South Carolina 29208-401, USA

Treasurer: Zhengjun Zhang, Department of Statistics, University of Wisconsin, Madison, Wisconsin 53706-1510, USA

Program Secretary: Ming Yuan, Department of Statistics, Columbia University, New York, NY 10027-5927, USA

IMS EDITORS

The Annals of Statistics. Editors: Richard J. Samworth, Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WB, UK. Ming Yuan, Department of Statistics, Columbia University, New York, NY 10027, USA

The Annals of Applied Statistics. Editor-in-Chief: Karen Kafadar, Department of Statistics, University of Virginia, Heidelberg Institute for Theoretical Studies, Charlottesville, VA 22904-4135, USA

The Annals of Probability. Editor: Amir Dembo, Department of Statistics and Department of Mathematics, Stanford University, Stanford, California 94305, USA

Statistical Science. Editor: Sonia Petrone, Department of Decision Sciences, Università Bocconi, 20100 Milano MI, Italy

The IMS Bulletin. Editor: Vlada Limic, UMR 7501 de l’Université de Strasbourg et du CNRS, 7 rue René Descartes, 67084 Strasbourg Cedex, France

The Annals of Applied Probability [ISSN 1050-5164 (print); ISSN 2168-8737 (online)], Volume 30, Number 6, December 2020. Published bimonthly by the Institute of Mathematical Statistics, 9760 Smith Road, Waite Hill, Ohio 44094, USA. Periodicals postage paid at Cleveland, Ohio, and at additional mailing offices.

POSTMASTER: Send address changes to The Annals of Applied Probability, Institute of Mathematical Statistics, Dues and Subscriptions Office, 9650 Rockville Pike, Suite L 2310, Bethesda, Maryland 20814-3998, USA.

Copyright © 2020 by the Institute of Mathematical Statistics
Printed in the United States of America
ON THE ASYMMPTOTIC OPTIMALITY OF THE COMB STRATEGY FOR PREDICTION WITH EXPERT ADVICE

BY ERHAN BAYRAKTAR¹,*, IBRAHIM EKREN² AND YILI ZHANG¹,†

¹Department of Mathematics, University of Michigan, *erhan@umich.edu; †zhyili@umich.edu
²Department of Mathematics, Florida State University, iekren@fsu.edu

For the problem of prediction with expert advice in the adversarial setting with geometric stopping, we compute the exact leading order expansion for the long time behavior of the value function. Then, we use this expansion to prove that as conjectured in Gravin, Peres and Sivan (In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (2016) 528–547, ACM), the comb strategies are indeed asymptotically optimal for the adversary in the case of 4 experts.

REFERENCES

MSC2020 subject classifications. 68T05, 35L02, 35J60.
Key words and phrases. Machine learning, expert advice framework, asymptotic expansion, reflected Brownian motion, system of hyperbolic equations, regret minimization.

MARKOV SELECTION FOR THE STOCHASTIC COMPRESSIBLE NAVIER–STOKES SYSTEM

BY DOMINIC BREIT1, EDUARD FEIREISL2 AND MARTINA HOFMANOVÁ3

1Department of Mathematics, Heriot-Watt University, d.breit@hw.ac.uk
2Institute of Mathematics AS CR, feireisl@math.cas.cz
3Fakultät für Mathematik, Universität Bielefeld, feireisl@math.cas.cz

We analyze the Markov property of solutions to the compressible Navier–Stokes system perturbed by a general multiplicative stochastic forcing. We show the existence of an almost sure Markov selection to the associated martingale problem. Our proof is based on the abstract framework introduced in Flandoli and Romito (Probab. Theory Related Fields \textbf{40} (2008) 407–458). A major difficulty arises from the fact, different from the incompressible case, that the velocity field is not continuous in time. In addition, it cannot be recovered from the variables whose time evolution is described by the Navier–Stokes system, namely, the density and the momentum. We overcome this issue by introducing an auxiliary variable into the Markov selection procedure.

REFERENCES

MSC2020 subject classifications. 60H15, 60H30, 35Q30, 76M35, 76N10.

Key words and phrases. Markov selection, compressible Navier–Stokes system, martingale solution, stochastic forcing.

STOCHASTIC METHODS FOR THE NEUTRON TRANSPORT EQUATION I: LINEAR SEMIGROUP ASYMPTOTICS

BY EMMA HORTON1,*, ANDREAS E. KYPRIANOU2 AND DENIS VILLEMONAIS1,†

1Institut Élie Cartan de Lorraine, Université de Lorraine, *emma.horton94@gmail.com; †denisvillemonais@gmail.com
2Department of Mathematical Sciences, University of Bath, a.kyprianou@bath.ac.uk

The neutron transport equation (NTE) describes the flux of neutrons through an inhomogeneous fissile medium. In this paper, we reconnect the NTE to the physical model of the spatial Markov branching process which describes the process of nuclear fission, transport, scattering, and absorption. By reformulating the NTE in its mild form and identifying its solution as an expectation semigroup, we use modern techniques to develop a Perron–Fröbenius (PF) type decomposition, showing that growth is dominated by a leading eigenfunction and its associated left and right eigenfunctions. In the spirit of results for spatial branching and fragmentation processes, we use our PF decomposition to show the existence of an intrinsic martingale and associated spine decomposition. Moreover, we show how criticality in the PF decomposition dictates the convergence of the intrinsic martingale. The mathematical difficulties in this context come about through unusual piecewise linear motion of particles coupled with an infinite type-space which is taken as neutron velocity. The fundamental nature of our PF decomposition also plays out in accompanying work (Harris, Horton and Kyprianou (2020), Cox et al. (2020)).

REFERENCES

MSC2020 subject classifications. Primary 82D75, 60J80, 60J75; secondary 60J99.

Key words and phrases. Neutron transport equation, branching Markov process, principal eigenvalue, semigroup theory, Perron–Fröbenius decomposition.

A SECOND ORDER ANALYSIS OF MCKEAN–VLASOV SEMIGROUPS

BY M. ARNAUDON¹ AND P. DEL MORAL²,³

¹Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251
²INRIA, Bordeaux Research Center, pierre.del-moral@inria.fr
³CMAP, Polytechnique Palaiseau

We propose a second order differential calculus to analyze the regularity and the stability properties of the distribution semigroup associated with McKean–Vlasov diffusions. This methodology provides second order Taylor type expansions with remainder for both the evolution semigroup as well as the stochastic flow associated with this class of nonlinear diffusions. Bismut–Elworthy–Li formulae for the gradient and the Hessian of the integro-differential operators associated with these expansions are also presented.

The article also provides explicit Dyson–Phillips expansions and a refined analysis of the norm of these integro-differential operators. Under some natural and easily verifiable regularity conditions we derive a series of exponential decays inequalities with respect to the time horizon. We illustrate the impact of these results with a second order extension of the Alekseev–Gröbner lemma to nonlinear measure valued semigroups and interacting diffusion flows. This second order perturbation analysis provides direct proofs of several uniform propagation of chaos properties w.r.t. the time parameter, including bias, fluctuation error estimate as well as exponential concentration inequalities.

REFERENCES

MSC2020 subject classifications. 65C35, 82C80, 58J65, 47J20.

Key words and phrases. Nonlinear diffusions, mean field particle systems, variational equations, logarithmic norms, gradient flows, Taylor expansions, contraction inequalities, Wasserstein distance, Bismut–Elworthy–Li formulae.

UTILITY MAXIMIZATION VIA DECOUPLING FIELDS

BY ALEXANDER FROMM\(^1\) AND PETER IMKELLER\(^2\)

\(^1\)Institute for Mathematics, University of Jena, alexander.fromm@uni-jena.de
\(^2\)Institute for Mathematics, Humboldt University of Berlin, imkeller@math.hu-berlin.de

We consider the utility maximization problem for a general class of utility functions defined on the real line. We rely on existing results which reduce the problem to a coupled forward–backward stochastic differential equation (FBSDE) and concentrate on showing existence and uniqueness of solution processes to this FBSDE. We use the method of decoupling fields for strongly coupled, multi-dimensional and possibly non-Lipschitz systems as the central technique in conducting the proofs.

REFERENCES

MSC2020 subject classifications. 93E20, 49J55, 60H30, 60H99.

Key words and phrases. Optimal stochastic control, forward backward stochastic differential equation, decoupling field.

SAMPLE PATH LARGE DEVIATIONS FOR LÉVY PROCESSES AND RANDOM WALKS WITH WEIBULL INCREMENTS

BY MIHAIL BAZHBA 1,*, JOSE BLANCHET 2, CHANG-HAN RHEE 3 AND BERT ZWART 1,†

1Centrum Wiskunde & Informatica, bazhba@cwi.nl; 2Department of Management Science and Engineering, Stanford University, jblanche@stanford.edu; 3Department of Industrial Engineering and Management Sciences, Northwestern University, chang-han.rhee@northwestern.edu

We study sample path large deviations for Lévy processes and random walks with heavy-tailed jump-size distributions that are of Weibull type. The sharpness and applicability of these results are illustrated by a counterexample proving the nonexistence of a full LDP in the J_1 topology, and by an application to a first passage problem.

REFERENCES

MSC2020 subject classifications. Primary 60F10; secondary 60G17.

Key words and phrases. Sample path large deviations, Lévy processes, random walks, heavy tails.

FROM TICK DATA TO SEMIMARTINGALES

BY YACINE AÏT-SAHALIA1 AND JEAN JACOD2

1Department of Economics, Princeton University, yacine@princeton.edu
2Institut de Mathématiques de Jussieu, Sorbonne Université, jean.jacod@gmail.com

Tick-by-tick asset price data exhibit a number of empirical regularities, including discreteness, long periods where prices are flat, periods of price moves of alternating plus and minus one tick, periods of rapid successive price moves of the same sign, and others. This paper proposes a framework to examine whether and how these microscopic features of the tick data are compatible with the typical macroscopic continuous-time models, based on Itô semimartingales, that are employed to represent asset prices. We construct in particular tick-by-tick models that deliver by scaling macroscopic semimartingale models with stochastic volatility and jumps.

REFERENCES

MSC2020 subject classifications. Primary 62F12, 62M05; secondary 60H10, 60J60.

Key words and phrases. Semimartingale, Lévy process, stochastic volatility, jumps, scaling, convergence, high frequency, continuous time.
APPLICATIONS OF MESOSCOPIC CLTS IN RANDOM MATRIX THEORY

BY BENJAMIN LANDON1 AND PHILIPPE SOSOE2

1Department of Mathematics, Massachusetts Institute of Technology, blandon@mit.edu
2Department of Mathematics, Cornell University, ps934@cornell.edu

We present some applications of central limit theorems on mesoscopic scales for random matrices. When combined with the recent theory of “homogenization” for Dyson Brownian motion, this yields the universality of quantities which depend on the behavior of single eigenvalues of Wigner matrices and \(\beta \)-ensembles. Among the results we obtain are the Gaussian fluctuations of single eigenvalues for Wigner matrices (without an assumption of 4 matching moments) and classical \(\beta \)-ensembles (\(\beta = 1, 2, 4 \)), Gaussian fluctuations of the eigenvalue counting function, and an asymptotic expansion up to order \(o(N^{-1}) \) for the expected value of eigenvalues in the bulk of the spectrum. The latter result solves a conjecture of Tao and Vu.

REFERENCES

MSC2020 subject classifications. 60F05.
Key words and phrases. Random matrix theory, universality, mesoscopic linear statistics.

HOW FRAGILE ARE INFORMATION CASCADES?

BY YUVAL PERES¹, MIKLÓS Z. RÁCZ²,* ALLAN SYL²,† AND IZABELLA STUHL³,‡

¹yuval@yuvalperes.com
²Princeton University, *mracz@princeton.edu, †asly@math.princeton.edu
³Penn State University, ‡iast68@psu.edu

It is well known that sequential decision making may lead to information cascades. That is, when agents make decisions based on their private information, as well as observing the actions of those before them, then it might be rational to ignore their private signal and imitate the action of previous individuals. If the individuals are choosing between a right and a wrong state, and the initial actions are wrong, then the whole cascade will be wrong. This issue is due to the fact that cascades can be based on very little information.

We show that if agents occasionally disregard the actions of others and base their action only on their private information, then wrong cascades can be avoided. Moreover, we study the optimal asymptotic rate at which the error probability at time t can go to zero. The optimal policy is for the player at time t to follow their private information with probability $p_t = c'/t$, leading to a learning rate of c'/t, where the constants c and c' are explicit.

REFERENCES

MSC2020 subject classifications. 91A26, 60C05.

Key words and phrases. Sequential decision making, information cascades, fragility, asymptotic learning, optimal learning rate.

STOCHASTIC METHODS FOR THE NEUTRON TRANSPORT EQUATION II: ALMOST SURE GROWTH

BY SIMON C. HARRIS¹, EMMA HORTON² AND ANDREAS E. KYPRIANOU³

¹Department of Statistics, University of Auckland, simon.harris@auckland.ac.nz
²Institut Élie Cartan de Lorraine, Université de Lorraine, emma.horton94@gmail.com
³Department of Mathematical Sciences, University of Bath, a.kyprianou@bath.ac.uk

REFERENCES

BULK EIGENVALUE FLUCTUATIONS OF SPARSE RANDOM MATRICES

BY YUKUN HE

Institute of Mathematics, University of Zürich, yukun.he@math.uzh.ch

We consider a class of sparse random matrices, which includes the adjacency matrix of Erdős–Rényi graphs $G(N, p)$ for $p \in [N^{-1}, N^{-\epsilon}]$. We identify the joint limiting distributions of the eigenvalues away from 0 and the spectral edges. Our result indicates that unlike Wigner matrices, the eigenvalues of sparse matrices satisfy central limit theorems with normalization $N\sqrt{p}$. In addition, the eigenvalues fluctuate simultaneously: the correlation of two eigenvalues of the same/different sign is asymptotically 1/-1. We also prove CLTs for the eigenvalue counting function and trace of the resolvent at mesoscopic scales.

REFERENCES

MSC2020 subject classifications. 05C80, 15B52, 60B20, 05C50.

Key words and phrases. Random matrices, sparse Erdős–Rényi graphs, CLT.

We consider a simple Markov model for the spread of a disease caused by two virus strains in a closed homogeneously mixing population of size N. The spread of each strain in the absence of the other one is described by the stochastic SIS logistic epidemic process, and we assume that there is perfect cross-immunity between the two strains, that is, individuals infected by one are temporarily immune to re-infections and infections by the other. For the case where one strain is strictly stronger than the other, and the stronger strain on its own is supercritical, we derive precise asymptotic results for the distribution of the time when the weaker strain disappears from the population. We further extend our results to certain parameter values where the difference between the basic reproductive ratios of the two strains may tend to 0 as $N \to \infty$.

In our proofs, we illustrate a new approach to a fluid limit approximation for a sequence of Markov chains in the vicinity of a stable fixed point of the limit differential equation, valid over long time intervals.

REFERENCES

MSC2020 subject classifications. 60J27, 92D30.

Key words and phrases. Stochastic SIS logistic epidemic, competing SIS epidemics, time to extinction, near-critical epidemic.

MODELLING INFORMATION FLOWS BY MEYER-σ-FIELDS IN THE SINGULAR STOCHASTIC CONTROL PROBLEM OF IRREVERSIBLE INVESTMENT

BY PETER BANK* AND DAVID BESSLICH†

Institut für Mathematik, Technische Universität Berlin, *bank@math.tu-berlin.de; †besslich@math.tu-berlin.de

In stochastic control problems delicate issues arise when the controlled system can jump due to both exogenous shocks and endogenous controls. Here one has to specify what the controller knows when about the exogenous shocks and how and when she can act on this information. We propose to use Meyer-σ-fields as a flexible tool to model information flow in such situations. The possibilities of this approach are illustrated first in a very simple linear stochastic control problem and then in a fairly general formulation for the singular stochastic control problem of irreversible investment with inventory risk. For the latter, we illustrate in a first case study how different signals on exogenous jumps lead to different optimal controls, interpolating between the predictable and the optional case in a systematic manner.

REFERENCES

MSC2020 subject classifications. 93E20, 60H30, 91B70.

Key words and phrases. Stochastic control, Meyer-σ-fields, làdlàg controls, irreversible investment with inventory risk.
SPLITTING ALGORITHMS FOR RARE EVENT SIMULATION OVER LONG TIME INTERVALS

BY ANNE BUIJSROGGE 1, PAUL DUPUIS 2,* AND MICHAEL SNARSKI 2,†

1Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, a.buijsrogge@utwente.nl
2Division of Applied Mathematics, Brown University, *paul_dupuis@brown.edu; †michael_snarski@brown.edu

In this paper we study the performance of splitting algorithms, and in particular the RESTART method, for the numerical approximation of the probability that a process leaves a neighborhood of a metastable point during some long time interval $[0, T]$. We show that, in contrast to alternatives such as importance sampling, the decay rate of the second moment does not degrade as $T \to \infty$. In the course of the analysis we develop some related large deviation estimates that apply when the time interval of interest depends on the large deviation parameter.

REFERENCES

MSC2020 subject classifications. 65C05, 60F10, 60G99.

Key words and phrases. Splitting algorithms, RESTART, Monte Carlo methods, large deviations, metastable points.

HOMOGENEOUS MAPPINGS OF REGULARLY VARYING VECTORS

BY PIOTR DYSZEWSKI1,2 AND THOMAS MIKOSCH3

1Institute of Mathematics, University of Wroclaw, piotr.dyszewski@math.uni.wroc.pl
2Department of Mathematics, Technical University of Munich, piotr.dyszewski@tum.de
3Department of Mathematics, University of Copenhagen, mikosch@math.ku.dk

It is well known that the product of two independent regularly varying random variables with the same tail index is again regularly varying with this index. In this paper, we provide sharp sufficient conditions for the regular variation property of product-type functions of regularly varying random vectors, generalizing and extending the univariate theory in various directions. The main result is then applied to characterize the regular variation property of products of i.i.d. regularly varying quadratic random matrices and of solutions to affine stochastic recurrence equations under nonstandard conditions.

REFERENCES

MSC2020 subject classifications. Primary 60E05; secondary 62G20.

Key words and phrases. Products of random matrices, multivariate regular variation, Breiman lemma, random difference equation.

Articles

ABBE, EMMANUEL AND BOIX-ADSERÀ, ENRIC. An information-percolation bound for spin synchronization on general graphs 1066–1090

AHLBORG, DANIEL, DEIJFEN, MARIA AND HOFFMAN, CHRISTOPHER. The two-type Richardson model in the half-plane 2261–2273

AÏT-Sahalia, Yacine and Jacod, Jean. From tick data to semimartingales... 2740–2768

ALLAN, ANDREW L. AND COHEN, SAMUEL N. Pathwise stochastic control with applications to robust filtering 2274–2310

ANASTASIOU, ANDREAS AND REINERT, GESINE. Bounds for the asymptotic distribution of the likelihood ratio 608–643

ANKIRCHNER, STEFAN, FROMM, ALEXANDER, KRUSE, THOMAS AND POPIER, ALEXANDRE. Optimal position targeting via decoupling fields...... 644–672

ARNAUDON, M. AND DEL MORAL, P. A second order analysis of McKean–Vlasov semigroups ... 2613–2664

ASCIONE, GIACOMO, PIROZZI, ENRICA AND TOALDO, BRUNO. On the exit time from open sets of some semi-Markov processes 1130–1163

BACKHOFF-VERAGUAS, JULIO, LACKER, DANIEL AND TANGPI, LUDOVIC. Nonexponential Sanov and Schilder theorems on Wiener space: BSDEs, Schrödinger problems and control 1321–1367

BAIK, JINHO AND BOTHNER, THOMAS. The largest real eigenvalue in the real Ginibre ensemble and its relation to the Zakharov–Shabat system ... 460–501

BAYRAKTAR, ERHAN, EKREN, IBRAHIM AND ZHANG, YILI. On the asymptotic optimality of the comb strategy for prediction with expert advice ... 2517–2546

BANERJEE, SAYAN AND BUDHIRAJA, AMARJIT. Parameter and dimension dependence of convergence rates to stationarity for reflecting Brownian motions .. 2005–2029

BANERJEE, SAYAN AND MUKHERJEE, DEBANKUR. Join-the-Shortest Queue diffusion limit in Halfin–Whitt regime: Sensitivity on the heavy-traffic parameter .. 80–144

BANK, PETER AND BESSLICH, DAVID. Modelling information flows by Meyer-σ-fields in the singular stochastic control problem of irreversible investment .. 2923–2962

BARDENET, RÉMI AND HARDY, ADRIEN. Monte Carlo with determinantal point processes .. 368–417

BARNES, CLAYTON L. Hydrodynamic limit and propagation of chaos for Brownian particles reflecting from a Newtonian barrier 1582–1613

BARRERA, GERARDO AND JARA, MILTON. Thermalisation for small random perturbations of dynamical systems .. 1164–1208

BAZHBA, MIHAIL, BLANCHET, JOSE, RHEE, CHANG-HAN AND ZWART, BERT. Sample path large deviations for Lévy processes and random walks with Weibull increments .. 2695–2739

BEN-HAMOU, ANNA. A threshold for cutoff in two-community random graphs .. 1824–1846

BENJAMINI, ITAI, FONTES, LUÍZ RENATO, HERMON, JONATHAN AND MACHADO, FÁBIO PRATES. On an epidemic model on finite graphs ... 208–258
GUILLIN, ARNAUD, MONMARCHÉ, PIERRE AND DURMUS, ALAIN. Geometric ergodicity of the Bouncy Particle Sampler 2069–2098

HAN, RUIJIAN, YE, ROUGANG, TAN, CHUNXI AND CHEN, KANI. Asymptotic theory of sparse Bradley–Terry model 2491–2515

HARDY, ADRIEN AND BARDENET, RÉMI. Monte Carlo with determinantal point processes 368–417

HARRIS, SIMON C., HORTON, EMMA AND KYPRIANOU, ANDREAS E. Stochastic methods for the neutron transport equation II: Almost sure growth 2815–2845

HARRIS, SIMON C., JOHNSTON, SAMUEL G. G. AND ROBERTS, MATTHEW I. The coalescent structure of continuous-time Galton–Watson trees 1368–1414

HE, YUKUN. Bulk eigenvalue fluctuations of sparse random matrices 2846–2879

HILING, ALEXANDRU, WONG, TAK KWONG AND ETTINGER, BORIS. The inverse first passage time problem for killed Brownian motion 1251–1275

HERDEGEN, MARTIN, MUHLE-KARBE, JOHANNES AND Cayé, THOMAS. Trading with small nonlinear price impact 706–746

HERMON, JONATHAN, MACHADO, FÁBIO PRATES, BENJAMINI, ITAI AND FONTES, LUÍZ RENATO. On an epidemic model on finite graphs 208–258

HERMON, JONATHAN, MORRIS, BEN, QIN, CHUAN AND SLY, ALLAN. The social network model on infinite graphs 902–935

HILÁRIO, MARCELO R., DOS SANTOS, RENATO S., SIDORAVICIUSS, VLADAS, TEIXEIRA, AUGUSTO AND BLONDEL, ORIANE. Random walk on random walks: Low densities 1614–1641

HOFMAN, CHRISTOPHER, AHLBERG, DANIEL AND DEIJFEN, MARIA. The two-type Richardson model in the half-plane 2261–2273

HOFMANOVÁ, MARTINA, BREIT, DOMINIC AND FEIREISL, EDUARD. Markov selection for the stochastic compressible Navier–Stokes system 2547–2572

HOLDEN, NINA AND LYONS, RUSSELL. Lower bounds for trace reconstruction 503–525

HORTON, EMMA, KYPRIANOU, ANDREAS E. AND HARRIS, SIMON C. Stochastic methods for the neutron transport equation II: Almost sure growth 2815–2845

HORTON, EMMA, KYPRIANOU, ANDREAS E. AND VILLEMONAIS, DENIS. Stochastic methods for the neutron transport equation I: Linear semigroup asymptotics 2573–2612

HUTZENTHALER, MARTIN AND PIEPER, DANIEL. Propagation of chaos and the many-demes limit for weakly interacting diffusions in the sparse regime 2311–2354

IMKELLER, PETER AND FROMM, ALEXANDER. Utility maximization via decoupling fields 2665–2694

JACOD, JEAN AND AÏT-Sahalia, YACINE. From tick data to semimartingales 2740–2768

JAGANNATH, AUKOSH, LOPATTO, PATRICK AND MIOLANE, LÉO. Statistical thresholds for tensor PCA 1910–1933

JARA, MILTON AND BARRERA, GERARDO. Thermalisation for small random perturbations of dynamical systems 1164–1208

JIN, PENG, RÜDIGER, BARBARA AND FRIESEN, MARTIN. Stochastic equation and exponential ergodicity in Wasserstein distances for affine processes 2165–2195
PERES, YUVAL, RÁCZ, MIKLÓS Z., SLY, ALLAN AND STUHL, IZABELLA. How fragile are information cascades? 2796–2814

PESKIR, G. AND DE ANGELIS, T. Global C^1 regularity of the value function in optimal stopping problems .. 1007–1031

PESKIR, G., ZHOU, Q. AND ERNST, P. A. Optimal real-time detection of a drifting Brownian coordinate 1032–1065

PIEPER, DANIEL AND HUTZENTHALER, MARTIN. Propagation of chaos and the many-demes limit for weakly interacting diffusions in the sparse regime 2311–2354

PIROZZI, ENRICA, TOALDO, BRUNO AND ASCIONE, GIACOMO. On the exit time from open sets of some semi-Markov processes 1130–1163

POISAT, JULIEN AND SIMENHAUS, FRANÇOIS. A limit theorem for the survival probability of a simple random walk among power-law renewal obstacles 2030–2068

POPIER, ALEXANDRE, ANKIRCHNER, STEFAN, FROMM, ALEXANDER AND KRUSE, THOMAS. Optimal position targeting via decoupling fields 644–672

POSSAMAÏ, DYLAN, TOUZI, NIZAR AND ZHANG, JIANFENG. Zero-sum path-dependent stochastic differential games in weak formulation 1415–1457

QIN, CHUAN, SLY, ALLAN, HERMON, JONATHAN AND MORRIS, BEN. The social network model on finite graphs .. 902–935

RÁCZ, MIKLÓS Z., SLY, ALLAN, STUHL, IZABELLA AND PERES, YUVAL. How fragile are information cascades? 2796–2814

REDIG, FRANK, CARINCI, GIOIA AND GIARDINÀ, CRISTIAN. Exact formulas for two interacting particles and applications in particle systems with duality .. 1934–1970

REINERT, GESINE AND ANASTASIOUT, ANDREAS. Bounds for the asymptotic distribution of the likelihood ratio 608–643

REY-BELLET, LUC, DUPUIS, PAUL, KATSOULAKIS, MARKOS A. AND PANTAZIS, YANNIS. Sensitivity analysis for rare events based on Rényi divergence ... 1507–1533

RHEE, CHANG-HAN, ZWART, BERT, BAZHBA, MIHAIL AND BLANCHET, JOSE. Sample path large deviations for Lévy processes and random walks with Weibull increments .. 2695–2739

ROBERTS, MATTHEW I., HARRIS, SIMON C. AND JOHNSTON, SAMUEL G. G. The coalescent structure of continuous-time Galton–Watson trees ... 1368–1414

RÜDIGER, BARBARA, FRIESEN, MARTIN AND JIN, PENG. Stochastic equation and exponential ergodicity in Wasserstein distances for affine processes .. 2165–2195

SAKSMAN, EERO, WEBB, CHRISTIAN AND JUNNILA, JANNE. Imaginary multiplicative chaos: Moments, regularity and connections to the Ising model .. 2099–2164

SAN MARTIN, JAIME, TAN, XIAOWEI AND NUTZ, MARCEL. Convergence to the mean field game limit: A case study 259–286

SCHÄFER, HELGE, ZEINDLER, DIRK AND BETZ, VOLKER. Random permutations without macroscopic cycles 1484–1505
TAN, XIAOWEI, NUTZ, MARCEL AND SAN MARTIN, JAIME. Convergence to the mean field game limit: A case study 259–286
TANGPI, LUDOVIC, BACKHOF-FERAGUAS, JULIO AND LACKER, DANIEL. Nonexponential Sanov and Schilder theorems on Wiener space: BSDEs, Schrödinger problems and control 1321–1367
TEIXEIRA, AUGUSTO, BLONDEL, ORIANE, HILÁRIO, MARCELO R., DOS SANTOS, RENATO S. AND SIDORAVICUS, VLADAS. Random walk on random walks: Low densities 1614–1641
TKACHOV, PASCHA, BEZBORODOV, VIKTOR, DI PERSIO, LUCA AND KRUEGER, TYLL. Spatial growth processes with long range dispersion: Microscopics, mesoscopics and discrepancy in spread rate 1091–1129
TOALDO, BRUNO, ASCIONE, GIACOMO AND PIROZZI, ENRICA. On the exit time from open sets of some semi-Markov processes 1130–1163
TOUZI, NIZAR, ZHANG, JIANFENG AND POSSAMAÏ, DYLAN. Zero-sum path-dependent stochastic differential games in weak formulation 1415–1457
TSITSIKLIS, JOHN N., ZUBELDIA, MARTIN AND GAMARNIK, DAVID. A lower bound on the queueing delay in resource constrained load balancing 870–901
VAN DER HOFSTAD, REMCO, LITVAK, NELLY AND GARAVAGLIA, ALESSANDRO. Local weak convergence for PageRank 40–79
VIGODA, ERIC, BLANCA, ANTONIO AND GHEISSARI, REZA. Random-cluster dynamics in \mathbb{Z}^2: Rapid mixing with general boundary conditions 418–459
VILLEMONAIS, DENIS, HORTON, EMMA AND KYPRIANOU, ANDREAS E. Stochastic methods for the neutron transport equation I: Linear semigroup asymptotics 2573–2612
VILLEMONAIS, DENIS AND MAILLER, CÉCILE. Stochastic approximation on noncompact measure spaces and application to measure-valued Pólya processes 2393–2438
WANG, NENG-YI AND WU, LIMING. Transport-information inequalities for Markov chains .. 1276–1320
WEBB, CHRISTIAN, JUNNILA, JANNE AND SAKSMAN, EERO. Imaginary multiplicative chaos: Moments, regularity and connections to the Ising model 2099–2164
WONG, TAK KWONG, ETTINGER, BORIS AND HENING, ALEXANDRU. The inverse first passage time problem for killed Brownian motion 1251–1275
WU, CONG AND ZHANG, JIANFENG. Viscosity solutions to parabolic master equations and McKean–Vlasov SDEs with closed-loop controls 936–986
WU, JIANG-LUN, ZHANG, RANGRANG, ZHANG, TUSHENG AND DONG, ZHAO. Large deviation principles for first-order scalar conservation laws with stochastic forcing 324–367
WU, LIMING AND WANG, NENG-YI. Transport-information inequalities for Markov chains .. 1276–1320
YAN, JUN. Nonlinear large deviations: Beyond the hypercube 812–846
YAO, JIANFENG, YUAN, WANGJUN AND SONG, JIAN. High-dimensional limits of eigenvalue distributions for general Wishart process 1642–1668
YE, ROUGANG, TAN, CHUNXI, CHEN, KANI AND HAN, RUIJIAN. Asymptotic theory of sparse Bradley–Terry model .. 2491–2515

YUAN, WANGJUN, SONG, JIAN AND YAO, JIANFENG. High-dimensional limits of eigenvalue distributions for general Wishart process 1642–1668

ZANGENEH, BIAN Z., MEHRI, SIMA, SCHEUTZOW, MICHAEL AND STANNAT, WILHELM. Propagation of chaos for stochastic spatially structured neuronal networks with delay driven by jump diffusions 175–207

ZEINDLER, DIRK, BETZ, VOLKER AND SCHÄFER, HELGE. Random permutations without macroscopic cycles 1484–1505

ZHANG, JIANFENG, POSSAMAÏ, DYLAN AND TOUZI, NIZAR. Zero-sum path-dependent stochastic differential games in weak formulation 1415–1457

ZHANG, JIANFENG AND WU, CONG. Viscosity solutions to parabolic master equations and McKean–Vlasov SDEs with closed-loop controls 936–986

ZHANG, RANGRANG, ZHANG, TUSHENG, DONG, ZHAO AND WU, JIANG-LUN. Large deviation principles for first-order scalar conservation laws with stochastic forcing .. 324–367

ZHANG, TUSHENG, DONG, ZHAO, WU, JIANG-LUN AND ZHANG, RANGRANG. Large deviation principles for first-order scalar conservation laws with stochastic forcing .. 324–367

ZHANG, YILI, BAYRAKTAR, ERHAN AND EKREN, IBRAHIM. On the asymptotic optimality of the comb strategy for prediction with expert advice 2517–2546

ZHANG, YUCHONG AND NUTZ, MARCEL. Conditional optimal stopping: A time-inconsistent optimization .. 1669–1692

ZHOU, Q., ERNST, P. A. AND PESKIR, G. Optimal real-time detection of a drifting Brownian coordinate ... 1032–1065

ZIMMER, RAPHAEL, BOU-RABEE, NAWAF AND EBERLE, ANDREAS. Coupling and convergence for Hamiltonian Monte Carlo 1209–1250

ZUBELDIA, MARTIN, GAMARNIK, DAVID AND TSITSIKLIS, JOHN N. A lower bound on the queueing delay in resource constrained load balancing ... 870–901

ZWART, BERT, BAZHBA, MIHAIL, BLANCHET, JOSE AND RHEE, CHANG-HAN. Sample path large deviations for Lévy processes and random walks with Weibull increments ... 2695–2739
Probability on Graphs
Random Processes on Graphs and Lattices

Geoffrey Grimmett

This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. Schramm–Löwner evolutions (SLE) arise in various contexts. The choice of topics is strongly motivated by modern applications and focuses on areas that merit further research. Special features include a simple account of Smirnov’s proof of Cardy’s formula for critical percolation, and a fairly full account of the theory of influence and sharp-thresholds. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.