THE ANNALS
of
PROBABILITY

AN OFFICIAL JOURNAL OF THE
INSTITUTE OF MATHEMATICAL STATISTICS

Articles

Planar Brownian motion and Gaussian multiplicative chaos ANTOINE JEGO 1597
Bounding the number of self-avoiding walks: Hammersley–Welsh with polygon insertion
HUGO DUMINIL-COPIN, SHIRSHENDU GANGULY, ALAN HAMMOND AND
IOAN MANOLESCU 1644
Elliptic stochastic quantization SERGIO ALBEVERIO, FRANCESCO C. DE VECCHI
AND MASSIMILIANO GUBINELLI 1693
Growth-fragmentation processes in Brownian motion indexed by the Brownian tree
JEAN-FRANÇOIS LE GALL AND ARMAND RIERA 1742
Points of infinite multiplicity of planar Brownian motion: Measures and local times
ELIE AÏDEKON, YUEYUN HU AND ZHAN SHI 1785
Averaging dynamics driven by fractional Brownian motion
MARTIN HAIRER AND XUE-MEI LI 1826
Confluence of geodesics in Liouville quantum gravity for \(\gamma \in (0, 2) \)
EWAIN GWYNNNE AND JASON MILLER 1861
From nonlinear Fokker–Planck equations to solutions of distribution dependent SDE
VIOREL BARBU AND MICHAEL RÖCKNER 1902
Periodic Pólya urns, the density method and asymptotics of Young tableaux
CYRIL BANDERIER, PHILIPPE MARCHAL AND MICHAEL WALLNER 1921
Finitary isomorphisms of Brownian motions ZEMER KOSLOFF AND TERRY SOO 1966
Near-critical spanning forests and renormalization
STÉPHANE BENOIST, LAURE DUMAZ AND WENDELIN WERNER 1980
Random walks on dynamical random environments with nonuniform mixing
ORIANE BLONDEL, MARCELO R. HILÁRIO AND AUGUSTO TEIXEIRA 2014
Algorithmic thresholds for tensor PCA
GÉRARD BEN AROUS, REZA GHEISSARI AND AUKOSH JAGANNATH 2052
Finitely dependent processes are finitary YINON SPINKA 2088

Vol. 48, No. 4—July 2020
INSTITUTE OF MATHEMATICAL STATISTICS

(Organized September 12, 1935)

The purpose of the Institute is to foster the development and dissemination of the theory and applications of statistics and probability.

IMS OFFICERS

President: Susan Murphy, Department of Statistics, Harvard University, Cambridge, Massachusetts 02138-2901, USA

President-Elect: Regina Y. Liu, Department of Statistics, Rutgers University, Piscataway, New Jersey 08854-8019, USA

Past President: Xiao-Li Meng, Department of Statistics, Harvard University, Cambridge, Massachusetts 02138-2901, USA

Executive Secretary: Edsel Peña, Department of Statistics, University of South Carolina, Columbia, South Carolina 29208-001, USA

Treasurer: Zhengjun Zhang, Department of Statistics, University of Wisconsin, Madison, Wisconsin 53706-1510, USA

Program Secretary: Ming Yuan, Department of Statistics, Columbia University, New York, NY 10027-5927, USA

IMS EDITORS

The Annals of Statistics. Editors: Richard J. Samworth, Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WB, UK. Ming Yuan, Department of Statistics, Columbia University, New York, NY 10027, USA

The Annals of Applied Statistics. Editor-in-Chief: Karen Kafadar, Department of Statistics, University of Virginia, Heidelberg Institute for Theoretical Studies, Charlottesville, VA 22904-4135, USA

The Annals of Probability. Editor: Amir Dembo, Department of Statistics and Department of Mathematics, Stanford University, Stanford, California 94305, USA

Statistical Science. Editor: Sonia Petrone, Department of Decision Sciences, Università Bocconi, 20100 Milano MI, Italy

The IMS Bulletin. Editor: Vlada Limic, UMR 7501 de l’Université de Strasbourg et du CNRS, 7 rue René Descartes, 67084 Strasbourg Cedex, France

The Annals of Probability [ISSN 0091-1798 (print); ISSN 2168-894X (online)], Volume 48, Number 4, July 2020. Published bimonthly by the Institute of Mathematical Statistics, 3163 Somerset Drive, Cleveland, Ohio 44122, USA. Periodicals postage paid at Cleveland, Ohio, and at additional mailing offices.

POSTMASTER: Send address changes to The Annals of Probability, Institute of Mathematical Statistics, Dues and Subscriptions Office, 9650 Rockville Pike, Suite L 2310, Bethesda, Maryland 20814-3998, USA.

Copyright © 2020 by the Institute of Mathematical Statistics
Printed in the United States of America
PLANAR BROWNIAN MOTION AND GAUSSIAN MULTIPLICATIVE CHAOS

BY ANTOINE JEGO

Faculty of Mathematics, University of Vienna, antoine.jego@univie.ac.at

We construct the analogue of Gaussian multiplicative chaos measures for the local times of planar Brownian motion by exponentiating the square root of the local times of small circles. We also consider a flat measure supported on points whose local time is within a constant of the desired thickness level and show a simple relation between the two objects. Our results extend those of (Ann. Probab. 22 (1994) 566–625), and in particular, cover the entire L^1-phase or subcritical regime. These results allow us to obtain a nondegenerate limit for the appropriately rescaled size of thick points, thereby considerably refining estimates of (Acta Math. 186 (2001) 239–270).

REFERENCES

MSC2010 subject classifications. 60J65, 60J55.

Key words and phrases. Brownian motion, local times, Gaussian multiplicative chaos, thick points.

BOUNDING THE NUMBER OF SELF-AVOIDING WALKS: HAMMERSLEY–WELSH WITH POLYGON INSERTION

BY HUGO DUMINIL-COPIN¹, SHIRSHENDU GANGULY², ALAN HAMMOND³ AND IOAN MANOLESCU⁴

¹Institut des Hautes Études Scientifiques, duminil@ihes.ch
²Department of Statistics, University of California, Berkeley, sganguly@berkeley.edu
³Departments of Mathematics and Statistics, University of California, Berkeley, alanmh@stat.berkeley.edu
⁴University of Fribourg, ioan.manolescu@unifr.ch

Let \(c_n = c_n(d) \) denote the number of self-avoiding walks of length \(n \) starting at the origin in the Euclidean nearest-neighbour lattice \(\mathbb{Z}^d \). Let \(\mu = \lim_n c_n^{1/n} \) denote the connective constant of \(\mathbb{Z}^d \). In 1962, Hammersley and Welsh (Quart. J. Math. Oxford Ser. (2) 13 (1962) 108–110) proved that, for each \(d \geq 2 \), there exists a constant \(C > 0 \) such that \(c_n \leq \exp(Cn^{1/2})\mu^n \) for all \(n \in \mathbb{N} \). While it is anticipated that \(c_n\mu^{-n} \) has a power-law growth in \(n \), the best-known upper bound in dimension two has remained of the form \(n^{1/2} \) inside the exponential.

The natural first improvement to demand for a given planar lattice is a bound of the form \(c_n \leq \exp(Cn^{1/2-\varepsilon})\mu^n \), where \(\mu \) denotes the connective constant of the lattice in question. We derive a bound of this form for two such lattices, for an explicit choice of \(\varepsilon > 0 \) in each case. For the hexagonal lattice \(\mathbb{H} \), the bound is proved for all \(n \in \mathbb{N} \); while for the Euclidean lattice \(\mathbb{Z}^2 \), it is proved for a set of \(n \in \mathbb{N} \) of limit supremum density equal to one.

A power-law upper bound on \(c_n\mu^{-n} \) for \(\mathbb{H} \) is also proved, contingent on a nonquantitative assertion concerning this lattice’s connective constant.

REFERENCES

MSC2010 subject classifications. Primary 60K35; secondary 60D05.

Key words and phrases. Self-avoiding walk, Hammersley–Welsh bound.

https://doi.org/10.1063/1.1704022

https://doi.org/10.1063/1.1704216

[16] MADRAS, N. (1995). A rigorous bound on the critical exponent for the number of lattice trees, animals, and

Inc., Boston, MA. MR1197356

978-1-4614-6025-1

91–107. MR0972773

ELLIPTIC STOCHASTIC QUANTIZATION

BY SERGIO ALBEVERIO *, FRANCESCO C. DE Vecchi ** AND MASSIMILIANO GUBINELLI †

Rheinische Friedrich-Wilhelms-Universität Bonn, * albeverio@iam.uni-bonn.de; ** francesco.devecchi@uni-bonn.de; † gubinelli@iam.uni-bonn.de

We prove an explicit formula for the law in zero of the solution of a class of elliptic SPDE in \mathbb{R}^2. This formula is the simplest instance of dimensional reduction, discovered in the physics literature by Parisi and Sourlas (Phys. Rev. Lett. 43 (1979) 744–745), which links the law of an elliptic SPDE in $d + 2$ dimension with a Gibbs measure in d dimensions. This phenomenon is similar to the relation between a \mathbb{R}^{d+1} dimensional parabolic SPDE and its \mathbb{R}^d dimensional invariant measure. As such, dimensional reduction of elliptic SPDEs can be considered a sort of elliptic stochastic quantisation procedure in the sense of Nelson (Phys. Rev. 150 (1966) 1079–1085) and Parisi and Wu (Sci. Sin. 24 (1981) 483–496). Our proof uses in a fundamental way the representation of the law of the SPDE as a supersymmetric quantum field theory. Dimensional reduction for the supersymmetric theory was already established by Klein et al. (Comm. Math. Phys. 94 (1984) 459–482). We fix a subtle gap in their proof and also complete the dimensional reduction picture by providing the link between the elliptic SPDE and the supersymmetric model. Even in our $d = 0$ context the arguments are nontrivial and a non-supersymmetric, elementary proof seems only to be available in the Gaussian case.

REFERENCES

MSC2010 subject classifications. Primary 60H15; secondary 81Q60, 82B44.

Key words and phrases. Stochastic quantisation, elliptic stochastic partial differential equations, dimensional reduction, Wiener space, supersymmetry, Euclidean quantum field theory.
GROWTH-FRAGMENTATION PROCESSES IN BROWNIAN MOTION INDEXED BY THE BROWNIAN TREE

BY JEAN-FRANÇOIS LE GALL AND ARMAND RIERA

Institut de Mathématique d'Orsay, Université Paris-Sud, jean-francois.legall@math.u-psud.fr; armand.riera@u-psud.fr

We consider the model of Brownian motion indexed by the Brownian tree. For every $r \geq 0$ and every connected component of the set of points where Brownian motion is greater than r, we define the boundary size of this component, and we then show that the collection of these boundary sizes evolves when r varies like a well-identified growth-fragmentation process. We then prove that the same growth-fragmentation process appears when slicing a Brownian disk at height r and considering the perimeters of the resulting connected components.

REFERENCES

MSC2010 subject classifications. Primary 60J80; secondary 60D05, 60J55, 60J65.

Key words and phrases. Tree-indexed Brownian motion, Brownian tree, growth-fragmentation process, Brownian disk, boundary size, Brownian snake.

POINTS OF INFINITE MULTIPLICITY OF PLANAR BROWNIAN MOTION:
MEASURES AND LOCAL TIMES

BY ELIE AÏDÉKON¹, YUEYUN HU² AND ZHAN SHI³

¹LPSM, Sorbonne Université Paris VI & IUF, elie.aidekon@upmc.fr
²LAGA, Université Paris XIII, yueyun@math.univ-paris13.fr
³LPSM, Sorbonne Université Paris VI, zhan.shi@upmc.fr

It is well known (see Dvoretzky, Erdős and Kakutani (Bull. Res. Council Israel Sect. F 7F (1958) 175–180) and Le Gall (J. Funct. Anal. 71 (1987) 246–262)) that a planar Brownian motion \((B_t)_{t\geq 0}\) has points of infinite multiplicity, and these points form a dense set on the range. Our main result is the construction of a family of random measures, denoted by \(\{\mathcal{M}_\alpha^\infty\}_{0<\alpha<2}\), that are supported by the set of the points of infinite multiplicity. We prove that for any \(\alpha \in (0,2)\), almost surely the Hausdorff dimension of \(\mathcal{M}_\alpha^\infty\) equals \(2-\alpha\), and \(\mathcal{M}_\alpha^\infty\) is supported by the set of thick points defined in Bass, Burdzy and Khoshnevisan (Ann. Probab. 22 (1994) 566–625) as well as by that defined in Dembo, Peres, Rosen and Zeitouni (Acta Math. 186 (2001) 239–270).

REFERENCES

MSC2010 subject classifications. 60J65.
Key words and phrases. Planar Brownian motion, infinite multiplicity, thick points.

We consider slow/fast systems where the slow system is driven by fractional Brownian motion with Hurst parameter $H > \frac{1}{2}$. We show that unlike in the case $H = \frac{1}{2}$, convergence to the averaged solution takes place in probability and the limiting process solves the ‘naïvely’ averaged equation. Our proof strongly relies on the recently obtained stochastic sewing lemma.

REFERENCES

MSC2010 subject classifications. 60G22, 60H10, 60H05.

Key words and phrases. Fractional Brownian motion, averaging, slow/fast system, sewing lemma.

CONFLUENCE OF GEODESICS IN LIOUVILLE QUANTUM GRAVITY FOR $\gamma \in (0, 2)$

BY EWAIN GWYNNE* AND JASON MILLER**

Department of Mathematics, University of Cambridge, * eg558@cam.ac.uk; ** jpmiller@statslab.cam.ac.uk

We prove that for any metric, which one can associate with a Liouville quantum gravity (LQG) surface for $\gamma \in (0, 2)$ satisfying certain natural axioms, its geodesics exhibit the following confluence property. For any fixed point z, a.s. any two γ-LQG geodesics started from distinct points other than z must merge into each other and subsequently coincide until they reach z. This is analogous to the confluence of geodesics property for the Brownian map proven by Le Gall (Acta Math. 205 (2010) 287–360). Our results apply for the subsequential limits of Liouville first passage percolation and are an important input in the proof of the existence and uniqueness of the LQG metric for all $\gamma \in (0, 2)$.

REFERENCES

MSC2010 subject classifications. 60J67, 60G52.
Key words and phrases. Liouville quantum gravity, Gaussian free field, LQG metric, Liouville first passage percolation, confluence of geodesics.

FROM NONLINEAR FOKKER–PLANCK EQUATIONS TO SOLUTIONS OF DISTRIBUTION DEPENDENT SDE

BY VIOREL BARBU1 AND MICHAEL RÖCKNER2

1Octav Mayer Institute of Mathematics, Romanian Academy, vbarbu41@gmail.com
2Fakultät für Mathematik, Universität Bielefeld, roeckner@math.uni-bielefeld.de

We construct weak solutions to the McKean–Vlasov SDE
\[
\frac{dX(t)}{dt} = b\left(X(t), \frac{d\mathcal{L}_X(t)}{dx}(X(t))\right)dt + \sigma\left(X(t), \frac{d\mathcal{L}_X(t)}{dt}(X(t))\right)dW(t)
\]
on \mathbb{R}^d for possibly degenerate diffusion matrices \(\sigma\) with \(X(0)\) having a given law, which has a density with respect to Lebesgue measure, \(dx\). Here, \(\mathcal{L}_X(t)\) denotes the law of \(X(t)\). Our approach is to first solve the corresponding nonlinear Fokker–Planck equations and then use the well-known superposition principle to obtain weak solutions of the above SDE.

REFERENCES

MSC2010 subject classifications. Primary 60H30, 60H10, 60G46; secondary 35C99, 58J165.

Key words and phrases. Fokker–Planck equation, Kolmogorov operator, probability density, \(m\)-accretive operator, Wiener process.

PERIODIC PÓLYA URNS, THE DENSITY METHOD AND ASYMPTOTICS OF YOUNG TABLEAUX

BY CYRIL BANDERIER¹, PHILIPPE MARCHAL² AND MICHAEL WALLNER³

¹LIPN, Université Paris Nord, cyril.banderier@lipn.univ-paris13.fr
²LAGA, Université Paris Nord, marchal@math.univ-paris13.fr
³LaBRI, Université de Bordeaux, michael.wallner@tuwien.ac.at

Pólya urns are urns where at each unit of time a ball is drawn and replaced with some other balls according to its colour. We introduce a more general model: the replacement rule depends on the colour of the drawn ball and the value of the time (mod \(p \)). We extend the work of Flajolet et al. on Pólya urns: the generating function encoding the evolution of the urn is studied by methods of analytic combinatorics. We show that the initial partial differential equations lead to ordinary linear differential equations which are related to hypergeometric functions (giving the exact state of the urns at time \(n \)). When the time goes to infinity, we prove that these periodic Pólya urns have asymptotic fluctuations which are described by a product of generalized gamma distributions. With the additional help of what we call the density method (a method which offers access to enumeration and random generation of poset structures), we prove that the law of the southeast corner of a triangular Young tableau follows asymptotically a product of generalized gamma distributions. This allows us to tackle some questions related to the continuous limit of random Young tableaux and links with random surfaces.

REFERENCES

MSC2010 subject classifications. Primary 60C05; secondary 05A15, 60F05, 60K99.

Key words and phrases. Pólya urn, Young tableau, generating functions, analytic combinatorics, pumping moment, D-finite function, hypergeometric function, generalized gamma distribution, Mittag-Leffler distribution.

FINITARY ISOMORPHISMS OF BROWNIAN MOTIONS

BY ZEMER KOSLOFF\(^1\) AND TERRY SOO\(^2\)

\(^1\)Einstein Institute of Mathematics, Hebrew University of Jerusalem, zemer.kosloff@mail.huji.ac.il
\(^2\)Department of Statistical Science, University College London, math@terrysoo.com

Ornstein and Shields (Advances in Math. 10 (1973) 143–146) proved that Brownian motion reflected on a bounded region is an infinite entropy Bernoulli flow, and, thus, Ornstein theory yielded the existence of a measure-preserving isomorphism between any two such Brownian motions. For fixed \(h > 0\), we construct by elementary methods, isomorphisms with almost surely finite coding windows between Brownian motions reflected on the intervals \([0, qh]\) for all positive rationals \(q\).

REFERENCES

MSC2010 subject classifications. 37A35, 60G15, 60G55, 60J10.

Key words and phrases. Ornstein theory, reflected Brownian motions, renewal point processes, finitary isomorphisms.

[26] Rudolph, D. J. (1978). If a two-point extension of a Bernoulli shift has an ergodic square, then it is Bernoulli. Israel J. Math. 30 159–180. MR0508261 https://doi.org/10.1007/BF02760837

We study random two-dimensional spanning forests in the plane that can be viewed both in the discrete case and in their appropriately taken scaling limits as a uniformly chosen spanning tree with some Poissonian deletion of edges or points. We show how to relate these scaling limits to a stationary distribution of a natural coalescent-type Markov process on a state space of abstract graphs with real-valued edge weights. This Markov process can be interpreted as a renormalization flow.

This provides a model for which one can rigorously implement the formalism proposed by the third author in order to relate the law of the scaling limit of a critical model to a stationary distribution of such a renormalization/Markov process. When starting from any two-dimensional lattice with constant edge weights, the Markov process does indeed converge in law to this stationary distribution that corresponds to a scaling limit of UST with Poissonian deletions.

The results of this paper heavily build on the convergence in distribution of branches of the UST to SLE\(_2\) (a result by Lawler, Schramm and Werner) as well as on the convergence of the suitably renormalized length of the loop-erased random walk to the “natural parametrization” of the SLE\(_2\) (a recent result by Lawler and Viklund).

REFERENCES

MSC2010 subject classifications. Primary 60K35; secondary 60J67, 82B20, 82B26, 82B28.

Key words and phrases. Uniform spanning trees, Schramm–Loewner evolution, renormalization.

RANDOM WALKS ON DYNAMICAL RANDOM ENVIRONMENTS WITH NONUNIFORM MIXING

BY ORIANE BLONDEL¹, MARCELO R. HILÁRIO² AND AUGUSTO TEIXEIRA³

¹Institut Camille Jordan, Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5208, blondel@math.univ-lyon1.fr
²Departamento de Matemática, UFMG, mhilario@mat.ufmg.br
³Departamento de Matemática, IMPA, augusto@impa.br

In this paper, we study random walks on dynamical random environments in 1 + 1 dimensions. Assuming that the environment is invariant under space-time shifts and fulfills a mild mixing hypothesis, we establish a law of large numbers and a concentration inequality around the asymptotic speed. The mixing hypothesis imposes a polynomial decay rate of covariances on the environment with sufficiently high exponent but does not impose uniform mixing. Examples of environments for which our methods apply include the contact process and Markovian environments with a positive spectral gap, such as the East model. For the East model, we also obtain that the distinguished zero satisfies a law of large numbers with strictly positive speed.

REFERENCES

MSC2010 subject classifications. 60K35, 82B43, 60G55.
Key words and phrases. Random walks, dynamic random environments, strong law of large numbers, renormalization.

ALGORITHMIC THRESHOLDS FOR TENSOR PCA

BY GÉRARD BEN AROUS1,*, REZA GHEISSARI1,† AND AUKOSH JAGANNATH2

1Courant Institute, New York University, *benarous@cims.nyu.edu; †reza@cims.nyu.edu
2Department of Statistics and Actuarial Science, University of Waterloo, a.jagannath@uwaterloo.ca

We study the algorithmic thresholds for principal component analysis of Gaussian k-tensors with a planted rank-one spike, via Langevin dynamics and gradient descent. In order to efficiently recover the spike from natural initializations, the signal-to-noise ratio must diverge in the dimension. Our proof shows that the mechanism for the success/failure of recovery is the strength of the “curvature” of the spike on the maximum entropy region of the initial data. To demonstrate this, we study the dynamics on a generalized family of high-dimensional landscapes with planted signals, containing the spiked tensor models as specific instances. We identify thresholds of signal-to-noise ratios above which order 1 time recovery succeeds; in the case of the spiked tensor model, these match the thresholds conjectured for algorithms such as approximate message passing. Below these thresholds, where the curvature of the signal on the maximal entropy region is weak, we show that recovery from certain natural initializations takes at least stretched exponential time. Our approach combines global regularity estimates for spin glasses with pointwise estimates to study the recovery problem by a perturbative approach.

REFERENCES

MSC2010 subject classifications. Primary 62F10, 62M05, 62F30; secondary 60H30, 65C05, 46N30, 82D30, 82C44.

Key words and phrases. Tensor PCA, tensor estimation, spiked tensor model, planted signal recovery, gradient descent, Langevin dynamics, spin glasses, free energy wells.

FINITELY DEPENDENT PROCESSES ARE FINITARY

BY YINON SPINKA

Department of Mathematics, University of British Columbia, yinon@math.ubc.ca

We show that any finitely dependent invariant process on a transitive amenable graph is a finitary factor of an i.i.d. process. With an additional assumption on the geometry of the graph, namely that no two balls with different centers are identical, we further show that the i.i.d. process may be taken to have entropy arbitrarily close to that of the finitely dependent process. As an application, we give an affirmative answer to a question of Holroyd (Ann. Inst. Henri Poincaré Probab. Stat. 53 (2017) 753–765).

REFERENCES

MSC2010 subject classifications. Primary 60J99, 60G10; secondary 28D99, 37A35.

Key words and phrases. Finitary factor, finitely dependent, entropy, amenable graph.

The Annals of Probability

Vol. 48 September 2020 No. 5

Articles

Identification of the Polaron measure in strong coupling and the Pekar variational formula
CHIRANJIB MUKHERJEE AND S. R. S. VARADHAN

On the absolute continuity of random nodal volumes
JÜRGEN ANGST AND GUILLAUME POLY

On the number of maximal paths in directed last-passage percolation
HUGO DUMINIL-COPIN, HARRY KESTEN, FEDOR NAZAROV, YUVAL PERES AND VLADAS SIDERAVICUS

Inverting the Markovian projection, with an application to local stochastic volatility models
DANIEL LACKER, MYKHAYLO SHKOLNIKOV AND JIACHENG ZHANG

Deterministic walks in random environment
ROMAIN AIMINO AND CARLANGELO LIVERANI

Martingale Benamou–Brenier: A probabilistic perspective
JULIO BACKHOFF-VERAGUAS, MATHIAS BEIGLBOCK, MARTIN HUESMANN AND SIGRID KÄLLBLAD

Fractional diffusion limit for a kinetic equation with an interface
TOMASZ KOMOROWSKI, STEFANO OLLA AND LENYA RYZHIK

Limit profile for random transpositions
LUCAS TEYSSIER

Solution of the Kolmogorov equation for TASEP
MIHAI NICA, JEREMY QUASTEL AND DANIEL REMENIK

Anomalous diffusion for multi-dimensional critical kinetic Fokker–Planck equations
NICOLAS FOURNIER AND CAMILLE TARDIF

Nonlinear large deviation bounds with applications to Wigner matrices and sparse Erdős–Rényi graphs
FANNY AUGÉRI

Mixing time of the adjacent walk on the simplex
PIETRO CAPUTO, CYRIL LABbé AND HUBERT LACOIN

The CLT in high dimensions: Quantitative bounds via martingale embedding
RONEN ELDAN, DAN MIKULINCER AND ALEX ZHAI

Large deviations and localization of the microcanonical ensembles given by multiple constraints
KYEONGSIK NAM

The Aldous chain on cladograms in the diffusion limit
WOLFGANG LOHR, LEONID MYTNIK AND ANITA WINTER

Errata: Mean field games with common noise
RENÉ CARMONA, FRANÇOIS DELARUE AND DANIEL LACKER

Anisotropic bootstrap percolation in three dimensions
DANIEL BLANQUICETT

Limiting entropy of determinantal processes
ANDRÁS MÉSZAROS
A Basic Course in Measure and Probability: Theory for Applications

Ross Leadbetter, Stamatis Cambanis, and Vladas Pipiras

Originating from the authors’ own graduate course at the University of North Carolina, this material has been thoroughly tried and tested over many years, making the book perfect for a two-term course or for self-study. It provides a concise introduction that covers all of the measure theory and probability most useful for statisticians, including Lebesgue integration, limit theorems in probability, martingales, and some theory of stochastic processes. Readers can test their understanding of the material through the 300 exercises provided.

The book is especially useful for graduate students in statistics and related fields of application (biostatistics, econometrics, finance, meteorology, machine learning, and so on) who want to shore up their mathematical foundation. The authors establish common ground for students of varied interests which will serve as a firm ‘take-off point’ for them as they specialize in areas that exploit mathematical machinery.