The stable graph: The metric space scaling limit of a critical random graph with i.i.d. power-law degrees
GUILLAUME CONCHON-KERJAN AND CHRISTINA GOLDSCHMIDT 1

Absence of backward infinite paths for first-passage percolation in arbitrary dimension
GERANDY BRITO, MICHAEL DAMRON AND JACK HANSON 70

Geometric and o-minimal Littlewood–Offord problems
JACOB FOX, MATTHEW KWAN AND HUNTER SPINK 101

Expansion in supercritical random sub-graphs of the hypercube and its consequences
JOSHUA ERDE, MIHYUN KANG AND MICHAEL KRIVELEVICH 127

Existence of an unbounded nodal hypersurface for smooth Gaussian fields in dimension $d \geq 3$ HUGO DUMINIL-COPIN, ALEJANDRO RIVERA, PIERRE-FRANÇOIS RODRIGUEZ AND HUGO VANNEUVILLE 228

Poisson statistics and localization at the spectral edge of sparse Erdős–Rényi graphs
JOHANNES ALT, RAPHAEL DUCATEZ AND ANTTI KNOWLES 277

Free energy of a diluted spin glass model with quadratic Hamiltonian
RATUL BISWAS, WEI-KUO CHEN AND ARNAB SEN 359
INSTITUTE OF MATHEMATICAL STATISTICS

(Organized September 12, 1935)

The purpose of the Institute is to foster the development and dissemination of the theory and applications of statistics and probability.

IMS OFFICERS

President: Peter Bühlmann, Seminar für Statistik, ETH Zürich, 8092 Zürich, Switzerland

President-Elect: Michael Kosorok, Department of Biostatistics and Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA

Past President: Krzysztof Burdzy, Department of Mathematics, University of Washington, Seattle, WA 98195-4350, USA

Executive Secretary: Edsel Peña, Department of Statistics, University of South Carolina, Columbia, SC 29208-001, USA

Treasurer: Jiashun Jin, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA

Program Secretary: Annie Qu, Department of Statistics, University of California, Irvine, Irvine, CA 92697-3425, USA

IMS EDITORS

The Annals of Statistics. Editors: Enno Mammen, Institute for Applied Mathematics, Heidelberg University, 69120 Heidelberg, Germany. Lan Wang, Miami Herbert Business School, University of Miami, Coral Gables, FL 33124, USA

The Annals of Applied Statistics. Editor-in-Chief: Ji Zhu, Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA

The Annals of Probability. Editors: Alice Guionnet, Unité de Mathématiques Pures et Appliquées, ENS de Lyon, Lyon, France. Christophe Garban, Institut Camille Jordan, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France

The Annals of Applied Probability. Editors: Kavita Ramanan, Division of Applied Mathematics, Brown University, Providence, RI 02912, USA. Qi-Man Shao, Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China

Statistical Science. Editor: Sonia Petrone, Department of Decision Sciences, Università Bocconi, 20100 Milano MI, Italy

The IMS Bulletin. Editor: Tati Howell, bulletin@imstat.org

The Annals of Probability [ISSN 0091-1798 (print); ISSN 2168-894X (online)], Volume 51, Number 1, January 2023. Published bimonthly by the Institute of Mathematical Statistics, 9760 Smith Road, Waite Hill, OH 44094, USA. Periodicals postage paid at Cleveland, Ohio, and at additional mailing offices.

POSTMASTER: Send address changes to The Annals of Probability, Institute of Mathematical Statistics, Dues and Subscriptions Office, PO Box 729, Middletown, MD 21769, USA.

Copyright © 2023 by the Institute of Mathematical Statistics
Printed in the United States of America
THE STABLE GRAPH: THE METRIC SPACE SCALING LIMIT OF A CRITICAL RANDOM GRAPH WITH I.I.D. POWER-LAW DEGREES

BY GUILLAUME CONCHON-KERJAN1,a AND CHRISTINA GOLDSCHMIDT2,b

1Prob-L@B, Department of Mathematical Sciences, University of Bath, agalck20@bath.ac.uk
2Department of Statistics and Lady Margaret Hall, University of Oxford, bgoldschm@stats.ox.ac.uk

We prove a metric space scaling limit for a critical random graph with independent and identically distributed degrees having power-law tail behaviour with exponent $\alpha + 1$, where $\alpha \in (1, 2)$. The limiting components are constructed from random \mathbb{R}-trees encoded by the excursions above its running infimum of a process whose law is locally absolutely continuous with respect to that of a spectrally positive α-stable Lévy process. These spanning \mathbb{R}-trees are measure-changed α-stable trees. In each such \mathbb{R}-tree, we make a random number of vertex identifications, whose locations are determined by an auxiliary Poisson process. This generalises results, which were already known in the case where the degree distribution has a finite third moment (a model which lies in the same universality class as the Erdős–Rényi random graph) and where the role of the α-stable Lévy process is played by a Brownian motion.

REFERENCES

\textbf{MSC2020 subject classifications.} Primary 60C05; secondary 05C80, 60F05, 60G52.

\textbf{Key words and phrases.} Random graph, scaling limit, stable Lévy processes.

ABSENCE OF BACKWARD INFINITE PATHS FOR FIRST-PASSAGE PERCOLATION IN ARBITRARY DIMENSION

BY GERANDY BRITO¹,ᵃ, MICHAEL DAMRON²,ᵇ AND JACK HANSON³,ᶜ

¹College of Computing, Georgia Institute of Technology, ²School of Mathematics, Georgia Institute of Technology, ³Department of Mathematics, City College of New York

In first-passage percolation (FPP), one places nonnegative random variables (weights) \((t_e)\) on the edges of a graph and studies the induced weighted graph metric. We consider FPP on \(\mathbb{Z}^d\) for \(d \geq 2\) and analyze the geometric properties of geodesics, which are optimizing paths for the metric. Specifically, we address the question of existence of bigeodesics, which are doubly-infinite paths whose subpaths are geodesics. It is a famous conjecture originating from a question of Furstenberg and most strongly supported for \(d = 2\) that, for continuously distributed i.i.d. weights, there a.s. are no bigeodesics. We provide the first progress on this question in general dimensions under no unproven assumptions. Our main result is that geodesic graphs, introduced in a previous paper of two of the authors, constructed in any deterministic direction a.s. do not contain doubly-infinite paths. As a consequence, one can construct random graphs of subsequential limits of point-to-hyperplane geodesics, which contain no bigeodesics. This gives evidence that bigeodesics, if they exist, cannot be constructed in a translation-invariant manner as limits of point-to-hyperplane geodesics.

REFERENCES

MSC2020 subject classifications. Primary 60K35; secondary 82B43.
Key words and phrases. First-passage percolation, bigeodesics, geodesic measures.

GEOMETRIC AND O-MINIMAL LITTLEWOOD–OFFORD PROBLEMS

BY JACOB FOXa, MATTHEW KWANb AND HUNTER SPINKc

Department of Mathematics, Stanford University, ajacobfox@stanford.edu, bmattkwan@stanford.edu, hspink@stanford.edu

The classical Erdős–Littlewood–Offord theorem says that for nonzero vectors $a_1, \ldots, a_n \in \mathbb{R}^d$, any $x \in \mathbb{R}^d$, and uniformly random $(\xi_1, \ldots, \xi_n) \in [-1, 1]^n$, we have $\Pr(a_1\xi_1 + \cdots + a_n\xi_n = x) = O(n^{-1/2})$. In this paper, we show that $\Pr(a_1\xi_1 + \cdots + a_n\xi_n \in S) \leq n^{-1/2+o(1)}$ whenever S is definable with respect to an o-minimal structure (e.g., this holds when S is any algebraic hypersurface), under the necessary condition that it does not contain a line segment. We also obtain an inverse theorem in this setting.

REFERENCES

MSC2020 subject classifications. 06C05, 03C64.

Key words and phrases. Littlewood–Offord theory, random walk, anti-concentration, o-minimal.

It is well known that the behaviour of a random subgraph of a d-dimensional hypercube, where we include each edge independently with probability p, undergoes a phase transition when p is around $\frac{1}{d}$. More precisely, standard arguments show that just below this value of p all components of this graph have order $O(d)$ with probability tending to one as $d \to \infty$ (whp for short), whereas Ajtai, Komlós and Szemerédi (Combinatorica 2 (1982) 1–7) showed that just above this value, in the supercritical regime, whp there is a unique "giant" component of order $\Theta(2^d)$. We show that whp the vertex expansion of the giant component is inverse polynomial in d. As a consequence, we obtain polynomial in d bounds on the diameter of the giant component and the mixing time of the lazy random walk on the giant component, answering questions of Bollobás, Kohayakawa and Łuczak (Random Structures and Algorithms 5 (1994) 627–648) and of Pete (Electron. Commun. Probab. 13 (2008) 377–392). Furthermore, our results imply lower bounds on the circumference and Hadwiger number of a random subgraph of the hypercube in this regime of p, which are tight up to polynomial factors in d.
METASTABLE BEHAVIOR OF WEAKLY MIXING MARKOV CHAINS: THE CASE OF REVERSIBLE, CRITICAL ZERO-RANGE PROCESSES

BY C. LANDIM1,a, D. MARCONDES2,b AND I. SEO3,c

1IMPA and CNRS UMR 6085, alandim@impa.br
2Institute of Mathematics and Statistics, Universidade de São Paulo, bdmarcondes@ime.usp.br
3Department of Mathematical Sciences and RIM, Seoul National University, cinsuk.seo@snu.ac.kr

We present a general method to derive the metastable behavior of weakly mixing Markov chains. This approach is based on properties of the resolvent equations and can be applied to metastable dynamics, which do not satisfy the mixing conditions required in \cite{2811401065-1114; J. Stat. Phys. 149 (2012) 598–618} or in Landim, Marcondes and Seo (2020).

As an application, we study the metastable behavior of critical zero-range processes. Let $r : S \times S \to \mathbb{R}_+$ be the jump rates of an irreducible random walk on a finite set S, reversible with respect to the uniform measure. For $\alpha > 0$, let $g : \mathbb{N} \to \mathbb{R}_+$ be given by $g(0) = 0$, $g(1) = 1$, $g(k) = [k/(k - 1)]^\alpha$, $k \geq 2$. Consider a zero-range process on S in which a particle jumps from a site x, occupied by k particles, to a site y at rate $g(k)r(x, y)$. For $\alpha \geq 1$, in the stationary state, as the total number of particles, represented by N, tends to infinity, all particles but a negligible number accumulate at one single site. This phenomenon is called condensation. Since condensation occurs if and only if $\alpha \geq 1$, we call the case $\alpha = 1$ critical. By applying the general method established in the first part of the article to the critical case, we show that the site, which concentrates almost all particles, evolves in the time-scale $N^2 \log N$ as a random walk on S whose transition rates are proportional to the capacities of the underlying random walk.

REFERENCES

MSC2020 subject classifications. 82C44, 60K35.
Key words and phrases. Metastability, interacting particle systems, zero-range process, condensation, resolvent equation.

EXISTENCE OF AN UNBOUNDED NODAL HYPERSURFACE FOR SMOOTH GAUSSIAN FIELDS IN DIMENSION $d \geq 3$

BY HUGO DUMINIL-COPIN1,a, ALEJANDRO RIVERA2,b, PIERRE-FRANÇOIS RODRIGUEZ3,c AND HUGO VANNEUVILLE4,d

1Mathematics Department, Université de Genève, ahugo.duminil@unige.ch
2Institute of Mathematics, École Polytechnique Fédérale de Lausanne, balejandro.rivera@epfl.ch
3Department of Mathematics, Imperial College London, cp.rodriguez@imperial.ac.uk
4Institut Fourier, Université Grenoble Alpes, dhugo.vanneuville@univ-grenoble-alpes.fr

For the Bargmann–Fock field on \mathbb{R}^d with $d \geq 3$, we prove that the critical level $\ell_c(d)$ of the percolation model formed by the excursion sets $\{f \geq \ell\}$ is strictly positive. This implies that for every ℓ sufficiently close to 0 (in particular for the nodal hypersurfaces corresponding to the case $\ell = 0$), $\{f = \ell\}$ contains an unbounded connected component that visits “most” of the ambient space. Our findings actually hold for a more general class of positively correlated smooth Gaussian fields with rapid decay of correlations. The results of this paper show that the behavior of nodal hypersurfaces of these Gaussian fields in \mathbb{R}^d for $d \geq 3$ is very different from the behavior of nodal lines of their 2-dimensional analogues.

REFERENCES

MSC2020 subject classifications. 60K35, 60G60.
Key words and phrases. Percolation, Gaussian fields.
POISSON STATISTICS AND LOCALIZATION AT THE SPECTRAL EDGE OF SPARSE ERDŐS–RÉNYI GRAPHS

BY JOHANNES ALT1,2,a, RAPHAEL DUCATEZ3,c AND ANTTI KNOWLES1,b

1Section of Mathematics, University of Geneva, ajohannes.alt@unige.ch, bantti.knowles@unige.ch
2Courant Institute of Mathematical Sciences, New York University
3Unité de Mathématiques Pures et Appliquées (UMPA), ENS Lyon, craphael.ducatez@ens-lyon.fr

We consider the adjacency matrix A of the Erdős–Rényi graph on N vertices with edge probability d/N. For $(\log \log N)^4 \ll d \lesssim \log N$, we prove that the eigenvalues near the spectral edge form asymptotically a Poisson point process and the associated eigenvectors are exponentially localized. As a corollary, at the critical scale $d \asymp \log N$, the limiting distribution of the largest nontrivial eigenvalue does not match with any previously known distribution. Together with (Comm. Math. Phys. 388 (2021) 507–579), our result establishes the coexistence of a fully delocalized phase and a fully localized phase in the spectrum of A. The proof relies on a three-scale rigidity argument, which characterizes the fluctuations of the eigenvalues in terms of the fluctuations of sizes of spheres of radius 1 and 2 around vertices of large degree.

REFERENCES

MSC2020 subject classifications. 60B20, 15B52, 05C80.

Key words and phrases. Random graph, random matrix, Poisson statistics, eigenvector localization.
FREE ENERGY OF A DILUTED SPIN GLASS MODEL WITH QUADRATIC HAMILTONIAN

BY RATUL BISWASa, WEI-KUO CHENb AND ARNAB SENc

School of Mathematics, University of Minnesota, abiswa087@umn.edu, bwkchen@umn.edu, carnab@umn.edu

We study a diluted mean-field spin glass model with a quadratic Hamiltonian. Our main result establishes the limiting free energy in terms of an integral of a family of random variables that are the weak limits of the quenched variances of the spins in the system with varying edge connectivity. The key ingredient in our argument is played by the identification of these random variables as the unique solution to a recursive distributional equation. Our results in particular provide the first example of the diluted Shcherbina–Tirozzi model, whose limiting free energy can be derived at any inverse temperature and external field.

REFERENCES

MSC2020 subject classifications. 60B20, 60G09, 60K35, 82B44.

Key words and phrases. Diluted model, Gardner problem, Shcherbina–Tirozzi model.

The Annals of Probability

Vol. 51 March 2023 No. 2

Rough semimartingales and p-variation estimates for martingale transforms
PETER FRIZ AND PAVEL ZORIN-KRANICH

Logarithmic heat kernel estimates without curvature restrictions
XIN CHEN, XUE-MEI LI AND BO WU

Universality of cutoff for exclusion with reservoirs
JUSTIN SALEZ

Berry–Esseen type bounds for the left random walk on $\text{GL}_d(\mathbb{R})$ under polynomial moment conditions
C. CUNY, J. DEDECKER, F. MERLEVÈDE AND M. PELIGRAD

Global-in-time probabilistically strong and Markov solutions to stochastic 3D Navier–Stokes equations: Existence and nonuniqueness
MARTINA HOFMANOVÁ, RONGCHAN ZHU AND XIANGCHAN ZHU

High-dimensional near-critical percolation and the torus plateau
TOM HUTCHCROFT, EMMANUEL MICHTA AND GORDON SLADE

Thermodynamic and scaling limits of the non-Gaussian membrane model
ERIC THOMA

Lower tails via relative entropy
GADY KOZMA AND WOJCIECH SAMOTIJ

Stability of Schrödinger potentials and convergence of Sinkhorn’s algorithm
MARCEL NUTZ AND JOHANNES WIESEL

Stein’s method for conditional central limit theorem
PARTHA S. DEY AND GRIGORY TERLOV

More limiting distributions for eigenvalues of Wigner matrices
SIMONA DIACONU
Probability on Graphs
Random Processes on Graphs and Lattices

Geoffrey Grimmett

This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. Schramm–Löwner evolutions (SLE) arise in various contexts. The choice of topics is strongly motivated by modern applications and focuses on areas that merit further research. Special features include a simple account of Smirnov’s proof of Cardy’s formula for critical percolation, and a fairly full account of the theory of influence and sharp-thresholds. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.

IMS member? Claim your 40% discount: www.cambridge.org/ims

Hardback US$73.80
Paperback US$23.99

Cambridge University Press, in conjunction with the Institute of Mathematical Statistics, established the IMS Monographs and IMS Textbooks series of high-quality books. The Series Editors are Xiao-Li Meng, Susan Holmes, Ben Hambly, D. R. Cox and Alan Agresti.