Articles

Secular coefficients and the holomorphic multiplicative chaos
JOSEPH NAJNUDEL, ELLIOT PAQUETTE AND NICK SIMM 1193

Locality of random digraphs on expanders
YEGANEH ALIMOHAMMADI, CHRISTIAN BORGs AND AMIN SABERI 1249

Concurrent Donsker–Varadhan and hydrodynamical large deviations
LORENZO BERTINI, DAVIDE GABRIELLI AND CLAUDIO LANDIM 1298

Mixing times for the TASEP in the maximal current phaseDOMINIK SCHMID 1342

Large deviation expansions for the coefficients of random walks on the general linear groupHUI XIAO, ION GRAMA AND QUANSHENG LIU 1380

Balanced excited random walk in two dimensions
OMER ANGEL, MARK HOLMES AND ALEJANDRO RAMIREZ 1421

A landscape of peaks: The intermittency islands of the stochastic heat equation with Lévy noiseCARSTEN CHONG AND PETER KEVEI 1449

Monotone subsequences in locally uniform random permutationsJONAS SJÖSTRAND 1502

On tail triviality of negatively dependent stochastic processes
KASRA ALISHAHI, MILAD BARZEGAR AND MOHAMMADSADEGH ZAMANI 1548

Exponential mixing for random dynamical systems and an example of Pierrehumbert
ALEX BLUMENTHAL, MICHELE COTI ZELATI AND RISHABH S. GVALANI 1559

Vol. 51, No. 4—July 2023
SECULAR COEFFICIENTS AND THE HOLOMORPHIC MULTIPLICATIVE CHAOS

BY JOSEPH NAJNUDEL1,a, ELLIOT PAQUETTE2,b AND NICK SIMM3,c

1School of Mathematics, University of Bristol, a joseph.najnudel@bristol.ac.uk
2Department of Mathematics and Statistics, McGill University, b elliot.paquette@mcgill.ca
3Department of Mathematics, University of Sussex, c n.j.simm@sussex.ac.uk

We study the secular coefficients of $N \times N$ random unitary matrices U_N drawn from the Circular β-Ensemble which are defined as the coefficients of $\{z^n\}$ in the characteristic polynomial $\text{det}(1 - zU_N^\ast)$. When $\beta > 4$, we obtain a new class of limiting distributions that arise when both n and N tend to infinity simultaneously. We solve an open problem of Diaconis and Gamburd (Electron. J. Combin. 11 (2004/06) 2) by showing that, for $\beta = 2$, the middle coefficient of degree $n = \left\lfloor \frac{N}{2} \right\rfloor$ tends to zero as $N \to \infty$. We show how the theory of Gaussian multiplicative chaos (GMC) plays a prominent role in these problems and in the explicit description of the obtained limiting distributions. We extend the remarkable magic square formula of (Electron. J. Combin. 11 (2004/06) 2) for the moments of secular coefficients to all $\beta > 0$ and analyse the asymptotic behaviour of the moments. We obtain estimates on the order of magnitude of the secular coefficients for all $\beta > 0$, and we prove these estimates are sharp when $\beta \geq 2$ and N is sufficiently large with respect to n. These insights motivated us to introduce a new stochastic object associated with the secular coefficients, which we call Holomorphic Multiplicative Chaos (HMC). Viewing the HMC as a random distribution, we prove a sharp result about its regularity in an appropriate Sobolev space. Our proofs expose and exploit several novel connections with other areas, including random permutations, Tauberian theorems and combinatorics.

REFERENCES

MSC2020 subject classifications. Primary 60B20, 60F05; secondary 60F05.

Key words and phrases. Random matrix, circular beta ensemble, circular unitary ensemble, magic squares, secular coefficient, characteristic polynomial, Gaussian multiplicative chaos, Ewens sampling formula, martingale central limit theorem.

[15] Chhaibi, R. and Najnudel, J. (2019). On the circle, \(GM(C) = \lim_{n \to \infty} C_{\beta E}(n)\) for \(\gamma = \sqrt{\frac{\pi}{2}}\), \((\gamma \leq 1)\). Available at arXiv:1904.00578.

LOCALITY OF RANDOM DIGRAPHS ON EXPANDERS

BY YEGANEH ALIMOHAMMADI1,a, CHRISTIAN BORGSC2,c AND AMIN SABERI1,b

1Management Science and Engineering, Stanford University, a yeganeh@stanford.edu, b saberi@stanford.edu
2Electrical Engineering and Computer Sciences, University of California, Berkeley, c borgs@berkeley.edu

We study random digraphs on sequences of expanders with a bounded average degree which converge locally in probability. We prove that the relative size and the threshold for the existence of a giant strongly connected component as well as the asymptotic fraction of nodes with giant fan-in or nodes with giant fan-out are local, in the sense that they are the same for two sequences with the same local limit. The digraph has a bow-tie structure, with all but a vanishing fraction of nodes lying either in the unique strongly connected giant and its fan-in and fan-out or in sets with small fan-in and small fan-out. All local quantities are expressed in terms of percolation on the limiting rooted graph, without any structural assumptions on the limit, allowing, in particular, for nontree-like graphs.

In the course of establishing these results, we generalize previous results on the locality of the size of the giant to expanders of bounded average degree with possibly nontree-like limits. We also show that, regardless of the local convergence of a sequence, the uniqueness of the giant and convergence of its relative size for unoriented percolation imply the bow-tie structure for directed percolation.

An application of our methods shows that the critical threshold for bond percolation and random digraphs on preferential attachment graphs is $p_c = 0$ with an infinite order phase transition at p_c.

REFERENCES

MSC2020 subject classifications. Primary 60K37, 05C48, 05C80, 05C20; secondary 90B15.

Key words and phrases. Expanders, local convergence, random graphs, percolation, giant component, oriented percolation, epidemic models, susceptible-infected-removed (SIR) process.
References

We consider the weakly asymmetric exclusion process on the d-dimensional torus. We prove a large deviations principle for the time averaged empirical density and current in the joint limit in which both the time interval and the number of particles diverge. This result is obtained both by analyzing the variational convergence, as the number of particles diverges, of the Donsker–Varadhan functional for the empirical process and by considering the large time behavior of the hydrodynamical rate function. The large deviations asymptotic of the time averaged current is then deduced by contraction principle. The structure of the minimizers of this variational problem corresponds to the possible occurrence of dynamical phase transitions.

REFERENCES

MSC2020 subject classifications. Primary 60K35, 60F10; secondary 82C22, 82C70.

Key words and phrases. Exclusion processes, hydrodynamical limits, large deviations, empirical process, dynamical phase transitions.

MIXING TIMES FOR THE TASEP IN THE MAXIMAL CURRENT PHASE

BY DOMINIK SCHMID

Department for Mathematics, University of Bonn, dschmid@uni-bonn.de

We study mixing times for the totally asymmetric simple exclusion process (TASEP) on a segment of size N with open boundaries. We focus on the maximal current phase and prove that the mixing time is of order $N^{3/2}$, up to logarithmic corrections. In the triple point, where the TASEP with open boundaries approaches the Uniform distribution on the state space, we show that the mixing time is precisely of order $N^{3/2}$. This is conjectured to be the correct order of the mixing time for a wide range of particle systems with maximal current. Our arguments rely on a connection to last passage percolation and recent results on moderate deviations of last passage times.

REFERENCES

MSC2020 subject classifications. Primary 60K35; secondary 60K37, 60J27.

Key words and phrases. Totally asymmetric simple exclusion process, mixing times, second class particles, corner growth model, last passage times, competition interface.
LARGE DEVIATION EXPANSIONS FOR THE COEFFICIENTS OF RANDOM WALKS ON THE GENERAL LINEAR GROUP

BY HUI XIAO1,a, ION GRAMA 2,b AND QUANSHENG LIU2,c

1 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, a xiaohui@amss.ac.cn
2 Univ Bretagne Sud, CNRS UMR 6205, LMBA, b ion.grama@univ-ubs.fr, c quansheng.liu@univ-ubs.fr

Consider \((g_n)_{n \geq 1}\) a sequence of independent and identically distributed random matrices and the left random walk \(G_n := g_n \ldots g_1, \ n \geq 1\) on the general linear group \(GL(d, \mathbb{R})\). Under suitable conditions we establish a Bahadur–Rao–Petrov type large deviation expansion for the coefficient \(\langle f, G_n v \rangle\) of the product \(G_n\), where \(v \in \mathbb{R}^d\) and \(f \in (\mathbb{R}^d)^*\). In particular, we obtain an explicit rate function in the large deviation principle, thus improving significantly the known large deviation bounds. A local limit theorem with large deviations for the coefficients and large deviation expansions under the change of probability measure are also proved.

REFERENCES

MSC2020 subject classifications. Primary 60F10, 60F05, 60B20; secondary 60B15, 37A30, 60J05.

Key words and phrases. Large deviation expansion, products of random matrices, coefficients, regularity of invariant measure, spectral gap.
We give nontrivial upper and lower bounds on the range of the so-called Balanced Excited Random Walk in two dimensions and verify a conjecture of Benjamini, Kozma and Schapira. To the best of our knowledge, these are the first nontrivial results for this two-dimensional model.

REFERENCES

MSC2020 subject classifications. Primary 60K35; secondary 60G42.

Key words and phrases. Excited random walk, martingale, range.
A LANDSCAPE OF PEAKS: THE INTERMITTENCY ISLANDS OF THE
STOCHASTIC HEAT EQUATION WITH LÉVY NOISE

BY CARSTEN CHONG¹,a AND PÉTER KEVEI²,b

¹Department of Statistics, Columbia University, a carsten.chong@columbia.edu
²Bolyai Institute, University of Szeged, b kevei@math.u-szeged.hu

We show that the spatial profile of the solution to the stochastic heat equation features multiple layers of intermittency islands if the driving noise is non-Gaussian. On the one hand, as expected, if the noise is sufficiently heavy-tailed, the largest peaks of the solution will be taller under multiplicative than under additive noise. On the other hand, surprisingly, as soon as the noise has a finite moment of order \(\frac{2}{d} \), where \(d \) is the spatial dimension, the largest peaks will be of the same order for both additive and multiplicative noise, which is in sharp contrast to the behavior of the solution under Gaussian noise. However, in this case a closer inspection reveals a second layer of peaks, beneath the largest peaks, that is exclusive to multiplicative noise and that can be observed by sampling the solution on the lattice. Finally, we compute the macroscopic Hausdorff and Minkowski dimensions of the intermittency islands of the solution. Under both additive and multiplicative noise, if it is not too heavy-tailed, the largest peaks will be self-similar in terms of their large-scale multifractal behavior. But under multiplicative noise, this type of self-similarity is not present in the peaks observed on the lattice.

REFERENCES

MSC2020 subject classifications. Primary 60H15, 60F15, 60G70; secondary 60G51, 28A78, 28A80.
Key words and phrases. Almost-sure asymptotics, integral test, macroscopic Hausdorff dimension, macroscopic Minkowski dimension, multifractal spectrum, Poisson noise, stable noise, stochastic PDE.

MONOTONE SUBSEQUENCES IN LOCALLY UNIFORM RANDOM PERMUTATIONS

BY Jonas Sjöstrand

Division of Mathematics and Physics, Mälardalen University, sjostrand.jonas@mdu.se

A locally uniform random permutation is generated by sampling \(n \) points independently from some absolutely continuous distribution \(\rho \) on the plane and interpreting them as a permutation by the rule that \(i \) maps to \(j \) if the \(i \)th point from the left is the \(j \)th point from below. As \(n \) tends to infinity, decreasing subsequences in the permutation will appear as curves in the plane, and by interpreting these as level curves, a union of decreasing subsequences give rise to a surface. We show that, under the correct scaling, for any \(r \geq 0 \), the largest union of \(\lfloor r \sqrt{n} \rfloor \) decreasing subsequences approaches a limit surface as \(n \) tends to infinity, and the limit surface is a solution to a specific variational problem. As a corollary, we prove the existence of a limit shape for the Young diagram associated to the random permutation under the Robinson–Schensted correspondence. In the special case where \(\rho \) is the uniform distribution on the diamond \(|x| + |y| < 1 \), we conjecture that the limit shape is triangular, and assuming the conjecture is true, we find an explicit formula for the limit surfaces of a uniformly random permutation and recover the famous limit shape of Vershik, Kerov and Logan, Shepp.

REFERENCES

MSC2020 subject classifications. Primary 60C05; secondary 05A05.

Key words and phrases. Random permutation, increasing subsequence, decreasing subsequence, limit shape, Young diagram, Robinson–Schensted.
ON TAIL TRIVIALITY OF NEGATIVELY DEPENDENT STOCHASTIC PROCESSES

BY KASRA ALISHAHI1,a, MILAD BARZEGAR1,b AND MOHAMMADSADEGH ZAMANI2,c

1Department of Mathematical Sciences, Sharif University of Technology, aalishahi@sharif.edu, bmilad.barzegar@sharif.edu
2Department of Statistics, Yazd University, czamani@yazd.ac.ir

We prove that every negatively associated sequence of Bernoulli random variables with “summable covariances” has a trivial tail σ-field. A corollary of this result is the tail triviality of strongly Rayleigh processes. This is a generalization of a result due to Lyons, which establishes tail triviality for discrete determinantal processes. We also study the tail behavior of negatively associated Gaussian and Gaussian threshold processes. We show that these processes are tail trivial though, in general, they do not satisfy the summable covariances property. Furthermore, we construct negatively associated Gaussian threshold vectors that are not strongly Rayleigh. This identifies a natural family of negatively associated measures that is not a subset of the class of strongly Rayleigh measures.

REFERENCES

MSC2020 subject classifications. Primary 60F20; secondary 60G15, 60G55, 62H20, 60C99.

Key words and phrases. Negative association, tail sigma-field, tail triviality, strongly Rayleigh processes, stationary processes, Gaussian processes, Gaussian threshold measures, Kolmogorov’s zero-one law.

EXPONENTIAL MIXING FOR RANDOM DYNAMICAL SYSTEMS AND AN EXAMPLE OF PIERREHUMBERT

BY ALEX BLUMENTHAL1,a, MICHELE COTI ZELATI2,b AND RISHABH S. GVALANI3,c

1School of Mathematics, Georgia Institute of Technology, 2Department of Mathematics, Imperial College London, 3Max-Planck-Institut für Mathematik in den Naturwissenschaften

We consider the question of exponential mixing for random dynamical systems on arbitrary compact manifolds without boundary. We put forward a robust, dynamics-based framework that allows us to construct space-time smooth, uniformly bounded in time, universal exponential mixers. The framework is then applied to the problem of proving exponential mixing in a classical example proposed by Pierrehumbert in 1994, consisting of alternating periodic shear flows with randomized phases. This settles a longstanding open problem on proving the existence of a space-time smooth (universal) exponentially mixing incompressible velocity field on a two-dimensional periodic domain while also providing a toolbox for constructing such smooth universal mixers in all dimensions.

REFERENCES

\textbf{MSC2020 subject classifications.} Primary 35Q49; secondary 37H05, 37A25, 76F25.

\textbf{Key words and phrases.} Exponential mixing, Lyapunov exponents, random shear flows.

The Annals of Probability

Future Issues

Decay of convolved densities via Laplace transform
Sergey G. Bobkov

Universality of approximate message passing with semi-random matrices
Rishabh Dudeja, Yue M. Lu and Subhabrata Sen

Convergence and non-convergence of scaled self-interacting random walks to Brownian motion perturbed at extrema
Elena Kosygina, Thomas Mountford and Jonathon Peterson

On strong solutions of Itô’s equations with $D\sigma$ and B in Morrey classes containing L^p_D
Nicolai Krylov

Perturbations of parabolic equations and diffusion processes with degeneration: Boundary problems, metastability, and homogenization
Mark Freidlin and Leonid Koralov

Parking on Cayley trees & Frozen Erdős–Rényi
Alice Contat and Nicolas Curien

The phase transition for planar Gaussian percolation models without FKG
Stephen Muirhead, Alejandro Rivera, Hugo Vanneuville and Laurin Köhler-Schindler

Stationary measures for the log-gamma polymer and KPZ equation in half-space
Guillaume Barraquand and Ivan Corwin

Scaling limit of the heavy-tailed ballistic deposition model with p-sticking
Francis Comets, Joseba Dalmau and Santiago Saglietti

Most transient random walks have infinitely many cut times
Noah Halperstam and Tom Hutchcroft

Global information from local observations of the noisy voter model on a graph
Itai Benjamini, Hagai Helman Tov and Maksim Zhukovskii
The Skew-Normal and Related Families
Adelchi Azzalini
in collaboration with Antonella Capitanio

Interest in the skew-normal and related families of distributions has grown enormously over recent years, as theory has advanced, challenges of data have grown, and computational tools have made substantial progress. This comprehensive treatment, blending theory and practice, will be the standard resource for statisticians and applied researchers. Assuming only basic knowledge of (non-measure-theoretic) probability and statistical inference, the book is accessible to the wide range of researchers who use statistical modelling techniques. Guiding readers through the main concepts and results, it covers both the probability and the statistics sides of the subject, in the univariate and multivariate settings. The theoretical development is complemented by numerous illustrations and applications to a range of fields including quantitative finance, medical statistics, environmental risk studies, and industrial and business efficiency.

The author’s freely available R package sn, available from CRAN, equips readers to put the methods into action with their own data.