Decay of convolved densities via Laplace transform S E R G E Y G. B O B K O V 1603
Universality of approximate message passing with semirandom matrices
Convergence and nonconvergence of scaled self-interacting random walks to Brownian
motion perturbed at extrema E L E N A K O S Y G I N A ,
On strong solutions of Itô’s equations with $D\sigma$ and b in Morrey classes containing L_d
N.V. K R Y L O V 1729
Perturbations of parabolic equations and diffusion processes with degeneration: Boundary
problems, metastability, and homogenization
M A R K F R E I D L I N A N D L E O N I D K O R A L O V 1752
The phase transition for planar Gaussian percolation models without FKG
S T E P H E N M U I R H E A D , A L E J A N D R O R I V E R A ,
H U G O V A N N E V I L L E A N D L A U R I N K Ô H L E R -S C H I N D L E R 1785
Stationary measures for the log-gamma polymer and KPZ equation in half-space
G U I L L A U M E B A R R A Q U A N D A N D I V A N C O R W I N 1830
Scaling limit of the heavy tailed ballistic deposition model with p-sticking
Most transient random walks have infinitely many cut times
N O A H H A L B E R S T A M A N D T O M H U T C H C R O F T 1932
Global information from local observations of the noisy voter model on a graph
Upper pointwise bounds are considered for convolution of bounded densities in terms of the associated Laplace and Legendre transforms. Applications of these bounds are illustrated in the central limit theorem with respect to the Rényi divergence.

REFERENCES

MSC2020 subject classifications. 60E, 60F.

Key words and phrases. Convolution, decay of densities.
UNIVERSALITY OF APPROXIMATE MESSAGE PASSING WITH SEMIRANDOM MATRICES

BY RISHABH DUDEJA1,a, YUE M. LU2,c AND SUBHABRATA SEN1,b

1Department of Statistics, Harvard University, ard2714@columbia.edu, bsubhabrataсен@fas.harvard.edu
2John A. Paulson School of Engineering and Applied Sciences, Harvard University, cyuelu@seas.harvard.edu

Approximate Message Passing (AMP) is a class of iterative algorithms that have found applications in many problems in high-dimensional statistics and machine learning. In its general form, AMP can be formulated as an iterative procedure driven by a matrix M. Theoretical analyses of AMP typically assume strong distributional properties on M, such as M has i.i.d. sub-Gaussian entries or is drawn from a rotational invariant ensemble. However, numerical experiments suggest that the behavior of AMP is universal as long as the eigenvectors of M are generic. In this paper we take the first step in rigorously understanding this universality phenomenon. In particular, we investigate a class of memory-free AMP algorithms (proposed by Çakmak and Opper for mean-field Ising spin glasses) and show that their asymptotic dynamics is universal on a broad class of semirandom matrices. In addition to having the standard rotational invariant ensemble as a special case, the class of semirandom matrices that we define in this work also includes matrices constructed with very limited randomness. One such example is a randomly signed version of the sine model, introduced by Marinari, Parisi, Potters, and Ritort for spin glasses with fully deterministic couplings.

REFERENCES

MSC2020 subject classifications. Primary 60F05; secondary 68W40.

Key words and phrases. Universality, message passing, spin glasses, random matrices.

CONVERGENCE AND NONCONVERGENCE OF SCALED SELF-INTERACTING RANDOM WALKS TO BROWNIAN MOTION PERTURBED AT EXTREMA

BY ELENA KOXYGINA 1,a, THOMAS MOUNTFORD 2,b AND JONATHON PETERSON 3,c

1Department of Mathematics, Baruch College, aelena.kosygina@baruch.cuny.edu
2Department of Mathematics, École Polytechnique Fédéral de Lausanne, bthomas.mountford@epfl.ch
3Department of Mathematics, Purdue University, cpetersen@purdue.edu

We use generalized Ray–Knight theorems, introduced by B. Tóth in 1996, together with techniques developed for excited random walks as main tools for establishing positive and negative results concerning convergence of some classes of diffusively scaled self-interacting random walks (SIRW) to Brownian motions perturbed at extrema (BMPE). Tóth’s work studied two classes of SIRWs: asymptotically free and polynomially self-repelling walks. For both classes Tóth has shown, in particular, that the distribution function of a scaled SIRW observed at independent geometric times converges to that of a BMPE indicated by the generalized Ray–Knight theorem for this SIRW. The question of weak convergence of one-dimensional distributions of scaled SIRW remained open. In this paper, on the one hand, we prove a full functional limit theorem for a large class of asymptotically free SIRWs, which includes the asymptotically free walks considered by Tóth. On the other hand, we show that rescaled polynomially self-repelling SIRWs do not converge to the BMPE predicted by the corresponding generalized Ray–Knight theorems and hence do not converge to any BMPE.

REFERENCES

[5] DAVIS, B. (1996). Weak limits of perturbed random walks and the equation \(Y_t = B_t + \alpha \sup \{ Y_s : s \leq t \} + \beta \inf \{ Y_s : s \leq t \} \). Ann. Probab. 24 2007–2023. MR1415238 https://doi.org/10.1214/aop/1041903215

MSC2020 subject classifications. Primary 60K35; secondary 60F17, 60J15.

Key words and phrases. Self-interacting random walks, functional limit theorem, Ray–Knight theorems, Brownian motion perturbed at its extrema, branching-like processes.
ON STRONG SOLUTIONS OF ITÔ’S EQUATIONS WITH $D\sigma$ AND b IN MORREY CLASSES CONTAINING L_d

BY N.V. KRYLOV

School of Mathematics, University of Minnesota, nkrylov@umn.edu

We consider Itô uniformly nondegenerate equations with time independent coefficients, the diffusion coefficient in $W^{1,2}_{2+s,\text{loc}}$, and the drift in a Morrey class containing L_d. We prove the unique strong solvability in the class of admissible solutions for any starting point. The result is new even if the diffusion is constant.

REFERENCES

MSC2020 subject classifications. Primary 60H10; secondary 60J60.

Key words and phrases. Strong solutions, vanishing mean oscillation, singular coefficients, Morrey coefficients.
PERTURBATIONS OF PARABOLIC EQUATIONS AND DIFFUSION PROCESSES WITH DEGENERATION: BOUNDARY PROBLEMS, METASTABILITY, AND HOMOGENIZATION

BY MARK FREIDLINa AND LEONID KORALOVb

Department of Mathematics, University of Maryland, amif@umd.edu, bkoralov@umd.edu

We study diffusion processes that are stopped or reflected on the boundary of a domain. The generator of the process is assumed to contain two parts: the main part that degenerates on the boundary in a direction orthogonal to the boundary and a small nondegenerate perturbation. The behavior of such processes determines the stabilization of solutions to the corresponding parabolic equations with a small parameter. Metastability effects arise in this case: the asymptotics of solutions, as the size of the perturbation tends to zero, depends on the time scale. Initial-boundary value problems with both the Dirichlet and the Neumann boundary conditions are considered. We also consider periodic homogenization for operators with degeneration.

REFERENCES

https://doi.org/10.1007/s00440-010-0264-0

https://doi.org/10.1016/j.spa.2016.05.003

https://doi.org/10.1080/17442508708833446

https://doi.org/10.1137/0520018

https://doi.org/10.1515/9781400881598

https://doi.org/10.1007/s10955-017-1777-z

https://doi.org/10.1016/j.jde.2022.05.029

https://doi.org/10.1007/978-3-642-25847-3

\textbf{MSC2020 subject classifications.} 35B40, 35K20, 35K65, 35B27, 60J60, 60F10.

\textbf{Key words and phrases.} Equations with degeneration on the boundary, stabilization in parabolic equations, metastability, asymptotic problems for PDEs.

THE PHASE TRANSITION FOR PLANAR GAUSSIAN PERCOLATION MODELS WITHOUT FKG

BY STEPHEN MUIRHEAD1,a, ALEJANDRO RIVERA2,b, HUGO VANNEUVILLE3,c AND LAURIN KÖHLER-SCHINDLER3,d

1School of Mathematical Sciences, Queen Mary University of London, 2Institute of Mathematics, EPFL, 3Department of Mathematics, ETH Zürich, 4laurin.koehler-schindler@math.ethz.ch

We develop techniques to study the phase transition for planar Gaussian percolation models that are not (necessarily) positively correlated. These models lack the property of positive associations (also known as the ‘FKG inequality’), and hence many classical arguments in percolation theory do not apply. More precisely, we consider a smooth stationary centred planar Gaussian field f and, given a level $\ell \in \mathbb{R}$, we study the connectivity properties of the excursion set $\{f \geq -\ell\}$. We prove the existence of a phase transition at the critical level $\ell_{\text{crit}} = 0$ under only symmetry and (very mild) correlation decay assumptions, which are satisfied by the random plane wave for instance. As a consequence, all nonzero level lines are bounded almost surely, although our result does not settle the boundedness of zero level lines (‘no percolation at criticality’).

To show our main result: (i) we prove a general sharp threshold criterion, inspired by works of Chatterjee, that states that ‘sharp thresholds are equivalent to the delocalisation of the threshold location’; (ii) we prove threshold delocalisation for crossing events at large scales—at this step we obtain a sharp threshold result but without being able to locate the threshold—and (iii) to identify the threshold, we adapt Tassion’s RSW theory replacing the FKG inequality by a sprinkling procedure. Although some arguments are specific to the Gaussian setting, many steps are very general and we hope that our techniques may be adapted to analyse other models without FKG.

REFERENCES

MSC2020 subject classifications. 60K35, 60G60.

Key words and phrases. Percolation, Gaussian fields, phase transition.

We construct explicit one-parameter families of stationary measures for the Kardar–Parisi–Zhang equation in half-space with Neumann boundary conditions at the origin, as well as for the log-gamma polymer model in a half-space. The stationary measures are stochastic processes that depend on the boundary condition as well as a parameter related to the drift at infinity. They are expressed in terms of exponential functionals of Brownian motions and gamma random walks. We conjecture that these constitute all extremal stationary measures for these models. The log-gamma polymer result is proved through a symmetry argument related to half-space Whittaker processes which we expect may be applicable to other integrable models. The KPZ result comes as an intermediate disorder limit of the log-gamma polymer result and confirms the conjectural description of these stationary measures from Barraquand and Le Doussal (2021). To prove the intermediate disorder limit, we provide a general half-space polymer convergence framework that extends works of (J. Stat. Phys. 181 (2020) 2372–2403; Electron. J. Probab. 27 (2022) Paper No. 45; Ann. Probab. 42 (2014) 1212–1256).

REFERENCES

MSC2020 subject classifications. Primary 60G10, 82C23, 60H15; secondary 60J25, 05E05.
Key words and phrases. Stationary measures, random growth, Kardar–Parisi–Zhang equation, integrable probability, directed polymers.

SCALING LIMIT OF THE HEAVY TAILED BALLISTIC DEPOSITION MODEL WITH p-STICKING

BY FRANCIS COMETS1,a, JOSEBA DALMAU2,b AND SANTIAGO SAGLIETTI3,c

This paper is dedicated to the memory of author Francis Comets, who passed away in June 2022

1Mathématiques, Université de Paris, acomets@lpsm.paris
2NYU–ECNU Institute of Mathematics, NYU Shanghai, bdalmau.joseba@gmail.com
3Facultad de Matemáticas, Pontificia Universidad Católica de Chile, csasaglietti@mat.uc.cl

Ballistic deposition is a classical model for interface growth in which unit blocks fall down vertically at random on the different sites of \mathbb{Z} and stick to the interface at the first point of contact, causing it to grow. We consider an alternative version of this model in which the blocks have random heights which are i.i.d. and heavy tailed, and where each block sticks to the interface at the first point of contact with probability p (otherwise, it falls straight down until it lands on a block belonging to the interface). We study scaling limits of the resulting interface for the different values of p and show that there is a phase transition as p goes from 1 to 0.

REFERENCES

MSC2020 subject classifications. 60K35, 82B41.

Key words and phrases. Ballistic deposition, last passage percolation, scaling limit, heavy tails, regular variation.
MOST TRANSIENT RANDOM WALKS HAVE INFINITELY MANY CUT TIMES

BY NOAH HALBERSTAM1,a AND TOM HUTCHCROFT2,b

We prove that if \((X_n)_{n \geq 0}\) is a random walk on a transient graph such that the Green’s function decays at least polynomially along the random walk, then \((X_n)_{n \geq 0}\) has infinitely many cut times almost surely. This condition applies in particular to any graph of spectral dimension strictly larger than 2. In fact, our proof applies to general (possibly nonreversible) Markov chains satisfying a similar decay condition for the Green’s function that is sharp for birth–death chains. We deduce that a conjecture of Diaconis and Freedman (Ann. Probab. 8 (1980) 115–130) holds for the same class of Markov chains, and resolve a conjecture of Benjamini, Gurel-Gurevich, and Schramm (Ann. Probab. 39 (2011) 1122–1136) on the existence of infinitely many cut times for random walks of positive speed.

REFERENCES

MSC2020 subject classifications. Primary 60J10, 05C81; secondary 60G09.

Key words and phrases. Random walks, cut times, Markov chains.
GLOBAL INFORMATION FROM LOCAL OBSERVATIONS OF THE NOISY VOTER MODEL ON A GRAPH

BY ITAI BENJAMINIa, HAGAI HELMAN TOVb AND MAKSIM ZHUKOVSKIIc

Weizmann Institute of Science, aitai.benjamini@weizmann.ac.il, bhagai.helman@gmail.com, czhukmax@gmail.com

We observe the outcome of the discrete time noisy voter model at a single vertex of a graph. We show that certain pairs of graphs can be distinguished by the frequency of repetitions in the sequence of observations. We prove that this statistic is asymptotically normal and that it distinguishes between (asymptotically) almost all pairs of finite graphs. We conjecture that the noisy voter model distinguishes between any two graphs other than stars.

REFERENCES

MSC2020 subject classifications. Primary 60C05, 60G50; secondary 60K35, 05C80.

Key words and phrases. Noisy voter model, random walks, graphs, random graphs.

The Annals of Probability

Future Issues

Parking on Cayley trees & frozen Erdős–Rényi
Alice Contat and Nicolas Curien

On the (non)stationary density of fractional-driven stochastic differential equations
Xue-Mei Li, Fabien Panloup and Julian Sieber

Loewner evolution driven by complex Brownian motion
Ewain Gwynne and Joshua Pfeffer

Multisource invasion percolation on the complete graph
Louigi Addario-Berry and Jordan Barrett

Isomorphisms of Poisson systems over locally compact groups
Amanda Wilkens

On the rightmost eigenvalue of non-Hermitian random matrices
Giorgio Cipolloni, László Erdős, Dominik Schröder and Yuanyuan Xu

On the coming down from infinity of coalescing Brownian motions
Clayton Barnes, Leonid Mytnik and Zhenyao Sun

A limit law for the most favorite point of simple random walk on a regular tree
Marek Biskup and Oren Louidor

Regularized modified log-Sobolev inequalities, and comparison of Markov chains
Pierre Youssef and Konstantin Tikhomirov

Limit theorems for the volumes of small codimensional random sections of ℓ^p-balls
Radoslaw Adamczak, Peter Pivovarov and Paul Simanjuntak

Essential enhancements in Abelian networks: continuity and uniform strict monotonicity
Lorenzo Taggi

The critical 2d stochastic heat flow is not a Gaussian multiplicative chaos
Francesco Caravenna, Rongfeng Sun and Nikos Zygouras

Delta-Bose gas from the viewpoint of the two-dimensional stochastic heat equation
Yu-Ting Chen

Erratum to “An optimal regularity result for Kolmogorov equations and weak uniqueness for some critical SPDEs”
Enrico Priola

Random partitions under the Plancherel–Hurwitz measure, high genus Hurwitz numbers and maps
Guillaume Chapuy, Baptiste Louf and Harriett Walsh

The Markov property of local times of Brownian motion indexed by the Brownian tree
Jean-François Le Gall

Particle density in diffusion-limited annihilating systems
Tobias Johnson, Matthew Junge, Hanbaek Lyu and David Sivakoff

Scaling limit of the Fleming–Viot multi-colour process
Oliver Tough

The stationary horizon and semi-infinite geodesics in the directed landscape
Ofer Busani, Timo Seppäläinen and Eva Sörensen
Probability on Graphs

Random Processes on Graphs and Lattices

Geoffrey Grimmett

This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. Schramm–Löwner evolutions (SLE) arise in various contexts. The choice of topics is strongly motivated by modern applications and focuses on areas that merit further research. Special features include a simple account of Smirnov’s proof of Cardy’s formula for critical percolation, and a fairly full account of the theory of influence and sharp-thresholds. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.

Cambridge University Press, in conjunction with the Institute of Mathematical Statistics, established the IMS Monographs and IMS Textbooks series of high-quality books. The Series Editors are Xiao-Li Meng, Susan Holmes, Ben Hambly, D. R. Cox and Alan Agresti.