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SECOND-ORDER FRACTIONAL MEAN-FIELD SDES WITH SINGULAR
KERNELS AND MEASURE INITIAL DATA

BY ZIMO HAO1,2,a, MICHAEL RÖCKNER1,3,c AND XICHENG ZHANG2,b

1Fakultät für Mathematik, Universität Bielefeld, azhao@math.uni-bielefeld.de
2School of Mathematics and Statistics, Beijing Institute of Technology, bxichengzhang@gmail.com

3Academy of Mathematics and Systems Science, CAS, croeckner@math.uni-bielefeld.de

In this paper we establish the local and global well-posedness of weak
and strong solutions to second-order fractional mean-field SDEs with singu-
lar/distribution interaction kernels and measure initial value, where the ker-
nel can be the Newton or Coulomb potential, Riesz potential, Biot–Savart
law, etc. Moreover, we also show the stability, smoothness, and the short time
singularity and large time decay estimates of the distribution density. Our
results reveal a phenomenon that for nonlinear mean-field equations, the reg-
ularity of the initial distribution could balance the singularity of the kernel.
The precise relationship between the singularity of kernels and the regularity
of initial values are calculated, which belongs to the subcritical regime in the
scaling sense. In particular, our results provide a microscopic probabilistic
explanation and establish a unified treatment for many physical models, such
as the fractional Vlasov–Poisson–Fokker–Planck system, the vorticity for-
mulation of 2D-fractal Navier–Stokes equations, surface quasi-geostrophic
models, etc.
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We investigate a model of random spatial permutations on two-
dimensional tori and establish that the joint distribution of large cycles is
asymptotically given by the Poisson–Dirichlet distribution with parameter
one. The asymmetry of the tori we consider leads to a spatial bias in the
permutations, and this allows for a simple argument to deduce the existence
of mesoscopic cycles. The main challenge is to leverage this mesoscopic
structure to establish the existence and distribution of macroscopic cycles.
We achieve this by a dynamical resampling argument in conjunction with a
method developed by Schramm for the study of random transpositions on the
complete graph. Our dynamical analysis implements generic heuristics for
the occurrence of the Poisson–Dirichlet distribution in random spatial per-
mutations and hence may be of more general interest.
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We study the convergence properties of Glauber dynamics for the ran-
dom field Ising model (RFIM) with ferromagnetic interactions on finite do-
mains of ℤd , d ≥ 2. Of particular interest is the Griffiths phase where cor-
relations decay exponentially fast in expectation over the quenched disorder,
but there exist arbitrarily large islands of weak fields where low-temperature
behavior is observed. Our results are twofold:

1. Under weak spatial mixing (boundary-to-bulk exponential decay of cor-
relations) in expectation, we show that the dynamics satisfy a weak Poincaré
inequality, implying polynomial relaxation to equilibrium over timescales
polynomial in the volume N of the domain and polynomial time mixing
from a warm start. From this we construct a polynomial-time approximate
sampling algorithm, based on running Glauber dynamics, over an increasing
sequence of approximations of the domain.

2. Under strong spatial mixing (exponential decay of correlations even
near boundary pinnings) in expectation, we prove a full Poincaré inequality,
implying exponential relaxation to equilibrium and No(1)-mixing time. Both
weak and strong spatial mixing hold at any temperature, provided the external
fields are strong enough.

Our proofs combine a stochastic localization technique, which has the
effect of increasing the variance of the field, with a field-dependent coarse
graining which controls the subcritical percolation process of sites with weak
fields.
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NEAR CRITICAL SCALING RELATIONS FOR PLANAR BERNOULLI
PERCOLATION WITHOUT DIFFERENTIAL INEQUALITIES
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We provide a new proof of the near-critical scaling relation β = ξ1ν for
Bernoulli percolation on the square lattice already proved by Kesten in 1987.
We rely on a novel approach that does not invoke Russo’s formula but rather
relates differences in crossing probabilities at different scales. The argument
is shorter and more robust than previous ones and is more likely to be adapted
to other models. The same approach may be used to prove the other scaling
relations appearing in Kesten’s work.
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DENSITY FLUCTUATIONS IN WEAKLY INTERACTING PARTICLE
SYSTEMS VIA THE DEAN–KAWASAKI EQUATION

BY FEDERICO CORNALBA1,a , JULIAN FISCHER2,b , JONAS INGMANNS2,c AND

CLAUDIA RAITHEL3,d

1Department of Mathematical Sciences , University of Bath, afc402@bath.ac.uk
2Institute of Science and Technology Austria (ISTA), bjulian.fischer@ista.ac.at, cjonas.ingmanns@ista.ac.at

3Technische Universität Wien (TU Wien), dclaudia.raithel@tuwien.ac.at

The Dean–Kawasaki equation—one of the most fundamental SPDEs of
fluctuating hydrodynamics—has been proposed as a model for density fluctu-
ations in weakly interacting particle systems. In its original form, it is highly
singular and fails to be renormalizable, even by approaches such as regu-
larity structures and paracontrolled distributions, hindering mathematical ap-
proaches to its rigorous justification. It has been understood recently that it is
natural to introduce a suitable regularization, for example, by applying a for-
mal spatial discretization or by truncating high-frequency noise: This yields
well-posed equations that should still precisely approximate the law of the
particle density fluctuations.

In the present work, we prove that a regularization in the form of a formal
discretization of the Dean–Kawasaki equation indeed accurately describes
density fluctuations in systems of weakly interacting diffusing particles: We
show that, in suitable weak metrics, the law of fluctuations as predicted by
the discretized Dean–Kawasaki SPDE approximates the law of fluctuations
of the original particle system, up to an error that is of arbitrarily high order in
the inverse particle number and a discretization error. In particular, the Dean–
Kawasaki equation provides a means for efficient and accurate simulations of
density fluctuations in weakly interacting particle systems.
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MULTIPLE POINTS ON THE BOUNDARIES OF BROWNIAN LOOP-SOUP
CLUSTERS
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For a Brownian loop soup with intensity c ∈ (0,1] in the unit disk, we
show that almost surely, the set of simple (resp., double) points on any portion
of boundary of any of its clusters has Hausdorff dimension 2 − ξc(2) (resp.,
2 − ξc(4)), where ξc(k) is the generalized disconnection exponent computed
in (Probab. Theory Related Fields 179 (2021) 117–164). As a consequence,
when the dimension is positive, such points are a.s. dense on every boundary
of every cluster. There are a.s. no triple points on the cluster boundaries.

As an intermediate result, we establish a separation lemma for Brownian
loop soups, which is a powerful tool for obtaining sharp estimates on non-
intersection and nondisconnection probabilities in the setting of loop soups.
In particular, it allows us to define a family of generalized intersection expo-
nents ξc(k, λ), and show that ξc(k) is the limit as λ ↘ 0 of ξc(k, λ).
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We consider the average number of limit cycles that bifurcate from a
randomly perturbed linear center where the perturbation consists of ran-
dom (bivariate) polynomials with independent coefficients. This problem re-
duces, by way of classical perturbation theory of the Poincaré first return
map, to a problem on the real zeros of a random univariate polynomial
fn(x) = ∑︁n

m=0 cmξmxm with independent coefficients ξm having mean zero,

variance 1 and cm ∼ m−1/2. This polynomial belongs to the class of gener-
alized Kac polynomials at the critical regime. We provide asymptotics for the
average number of real zeros and answer the question on bifurcating limit
cycles. Additionally, we provide the correct order of the mean number of real
roots in the subcritical regime.
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We explore probabilistic consequences of correspondences between q-
Whittaker measures and periodic and free boundary Schur measures estab-
lished by the authors in the recent paper, Forum of Mathematics, Pi, 11:e27,
2023. The result is a comprehensive theory of solvability of stochastic models
in the KPZ class where exact formulas descend from mapping to explicit de-
terminantal and Pfaffian point processes. We discover new variants of known
results as determinantal formulas for the current distribution of the ASEP on
the line and new results such as Fredholm–Pfaffian formulas for the distri-
bution of the point-to-point partition function of the Log Gamma polymer
model in half space. In the latter case, scaling limits and asymptotic analysis
allow to establish Baik–Rains phase transition for the height function of the
KPZ equation on the half line at the origin.
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REGULARITY OF THE SCHRAMM–LOEWNER EVOLUTION:
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We find optimal (up to constant) bounds for the following measures for
the regularity of the Schramm–Loewner evolution (SLE): variation regularity,
modulus of continuity and law of the iterated logarithm. For the latter two, we
consider the SLE with its natural parametrization. More precisely, denoting
by d ∈ (0,2] the dimension of the curve, we show the following:

1. The optimal ψ-variation is ψ(x) = xd(log logx−1)−(d−1) in the sense
that η is a.s. of finite ψ-variation for this ψ and not for any function decaying
more slowly as x ↓ 0.

2. The optimal modulus of continuity is ω(s) = c s1/d (log s−1)1−1/d ,
that is, for some random c > 0 we have |η(t) − η(s)| ≤ ω(t − s) a.s., while
this does not hold for any function ω decaying faster as s ↓ 0.

3. lim supt↓0 |η(t)| (t1/d (log log t−1)1−1/d )−1 is a.s. equal to a determin-
istic constant in (0,∞).

We also show that the natural parametrization of SLE is given by the
fine mesh limit of the ψ-variation. As part of our proof, we show that every
stochastic process whose increments satisfy a particular moment condition
attains a certain variation regularity.
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UNIVERSALITY OF GLOBAL ASYMPTOTICS OF JACK-DEFORMED
RANDOM YOUNG DIAGRAMS AT VARYING TEMPERATURES

BY CESAR CUENCA1,a, MACIEJ DOŁĘGA2,b AND ALEXANDER MOLL3,c

1Department of Mathematics, The Ohio State University, acuenca.2@osu.edu
2Institute of Mathematics, Polish Academy of Sciences, bmdolega@impan.pl
3Department of Mathematics and Statistics, Reed College, camoll@reed.edu

This paper establishes universal formulas describing the global asymp-
totics of two distinct discrete versions of β-ensembles in the high, low and
fixed temperature regimes. Our results affirmatively answer a question posed
by the second author and Śniady.

We first introduce a special class of Jack measures on Young diagrams
of arbitrary size, called the “Jack–Thoma measures,” and prove the LLN and
CLT in the three aforementioned limit regimes. In each case, we provide ex-
plicit formulas for polynomial observables of the limit shape and Gaussian
fluctuations around the limit shape. These formulas have surprising positivity
properties and are expressed as sums of weighted lattice paths. Second, we
show that the previous formulas are universal: they also describe the limit
shape and Gaussian fluctuations for the model of random Young diagrams of
a fixed size derived from Jack characters with the approximate factorization
property. Finally, in stark contrast with continuous β-ensembles, we show
that the limit shapes at high and low temperatures of our random Young di-
agrams are one-sided infinite staircase shapes. For the Jack–Plancherel mea-
sure, we describe this shape explicitly by relating its local minima with the
zeroes of Bessel functions.
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Consider a random symmetric matrix with i.i.d. entries on and above its
diagonal that are products of Bernoulli random variables and random vari-
ables with sub-Gaussian tails. Such a matrix will be called a sparse Wigner
matrix and can be viewed as the adjacency matrix of a random network with
sub-Gaussian weights on its edges. In the regime where the mean degree is
at least logarithmic in dimension, the edge eigenvalues of an appropriately
scaled sparse Wigner matrix stick to the edges of the support of the semicir-
cle law. We show that, in this sparsity regime, the large deviations upper tail
event of the largest eigenvalue of a sparse Wigner matrix with sub-Gaussian
entries is generated by either the emergence of a high degree vertex with a
large vertex weight or that of a clique with large edge weights. Interestingly,
the rate function obtained is discontinuous at the typical value of the largest
eigenvalue, which accounts for the fact that its large deviation behaviour is
generated by finite rank perturbations. This complements the results of Gan-
guly and Nam (Probab. Theory Related Fields 184 (2022) 613–679), and
Ganguly, Hiesmayr, and Nam (J. Lond. Math. Soc. (2) 110 (2024) Paper No.
e12954, 64), which considered the case where the mean degree is constant.
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Math. 373 107289, 53. MR4130460 https://doi.org/10.1016/j.aim.2020.107289

[29] COOK, N., DUCATEZ, R. and GUIONNET, A. (2023). Full large deviation principles for the largest eigenvalue
of sub-Gaussian Wigner matrices. arXiv preprint. Available at arXiv:2302.14823.

[30] DEMBO, A. and ZEITOUNI, O. (2010). Large Deviations Techniques and Applications. Stochastic Mod-
elling and Applied Probability 38. Springer, Berlin. Corrected reprint of the second (1998) edition.
MR2571413 https://doi.org/10.1007/978-3-642-03311-7

[31] ELDAN, R. (2018). Gaussian-width gradient complexity, reverse log-Sobolev inequalities and nonlinear
large deviations. Geom. Funct. Anal. 28 1548–1596. MR3881829 https://doi.org/10.1007/s00039-018-
0461-z
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