CONTENTS

CARRIZO VERGARA, R., ALLARD, D. and DESASSIS, N.
A general framework for SPDE-based stationary random fields 1

BRAUNSTEINS, P., HAUTPHENNE, S. and MINUESA, C.
Parameter estimation in branching processes with almost sure extinction 33

BONNEFONT, M. and JOULIN, A.
A note on eigenvalues estimates for one-dimensional diffusion operators 64

HAN, Q.
Multiplier U-processes: Sharp bounds and applications 87

ERNY, X., LÖCHERBACH, E. and LOUKIANOVA, D.
Mean field limits for interacting Hawkes processes in a diffusive regime 125

IACOBELLI, G., RIBEIRO, R., VALLE, G. and ZUAZNÁBAR, L.
Tree builder random walk: Recurrence, transience and ballisticity 150

CHÉRIEF-ABDELLATIF, B.-E. and ALQUIER, P.
Finite sample properties of parametric MMD estimation: Robustness to misspecification and dependence 181

KIM, K. and YI, J.
Limit theorems for time-dependent averages of nonlinear stochastic heat equations 214

ELTZNER, B.
Geometrical smeariness – a new phenomenon of Fréchet means 239

GROISMAN, P., JONCKHEERE, M. and SAPIENZA, F.
Nonhomogeneous Euclidean first-passage percolation and distance learning 255

LEE, C.Y.
The Hausdorff measure of the range and level sets of Gaussian random fields with sectorial local nondeterminism 277

HAYASHI, M.
Information geometry approach to parameter estimation in hidden Markov model 307

SUN, X., XIE, L. and XIE, Y.
Strong and weak convergence rates for slow–fast stochastic differential equations driven by α-stable process 343

BACKHOFF-VERAGUAS, J. and PAMMER, G.
Applications of weak transport theory 370

(continued)

A list of forthcoming papers can be found online at http://www.bernoullisociety.org/index.php/publications/bernoulli-journal/bernoulli-journal-papers
CONTENTS

(continued)

BENHENNI, K., GIRARD, D.A. and LOUHICHI, S. 395
On bandwidth selection problems in nonparametric trend estimation under martingale difference errors

EL NMEIR, R., LUSCHGY, H. and PAGÈS, G. 424
New approach to greedy vector quantization

PHANDOIDAEN, N. and RICHTER, S. 453
Empirical process theory for locally stationary processes

COSO, A. and RUSSO, F. 481
Crandall–Lions viscosity solutions for path-dependent PDEs: The case of heat equation

GAILLAC, C. and GAUTIER, E. 504
Adaptive estimation in the linear random coefficients model when regressors have limited variation

CAO, H. and WU, W.B. 525
Testing and estimation for clustered signals

FRANCO, C. and ZAKOİAN, J.-M. 548
Adaptiveness of the empirical distribution of residuals in semi-parametric conditional location scale models

LAM-WEIL, J., LAURENT, B. and LOUBES, J.-M. 579
Minimax optimal goodness-of-fit testing for densities and multinomials under a local differential privacy constraint

GAYNANOVA, I. 601
Erratum for Prediction and estimation consistency of sparse multi-class penalized optimal scoring

LI, W., WANG, Q., YAO, J. and ZHOU, W. 606
On eigenvalues of a high-dimensional spatial-sign covariance matrix

LAU, J.W. and CRIPPS, E. 638
Thinned completely random measures with applications in competing risks models

DOUKHAN, P., LEUCHT, A. and NEUMANN, M.H. 663
Mixing properties of non-stationary INGARCH(1, 1) processes

ROGERS, D. and WINKEL, M. 689
A Ray–Knight representation of up-down Chinese restaurants
BERNOULLI
Official Journal of the Bernoulli Society for Mathematical Statistics and Probability

Aims and Scope
BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work.

Bernoulli Society for Mathematical Statistics and Probability
The Bernoulli Society was founded in 1973. It is an autonomous Association of the International Statistical Institute, ISI. According to its statutes, the object of the Bernoulli Society is the advancement, through international contacts, of the sciences of probability (including the theory of stochastic processes) and mathematical statistics and of their applications to all those aspects of human endeavour which are directed towards the increase of natural knowledge and the welfare of mankind.

Meetings: http://www.bernoulli-society.org/index.php/meetings
The Society holds a World Congress every four years; more frequent meetings, coordinated by the Society's standing committees and often organised in collaboration with other organisations, are the European Meeting of Statisticians, the Conference on Stochastic Processes and their Applications, the CLAPEM meeting (Latin-American Congress on Probability and Mathematical Statistics), the European Young Statisticians Meeting, and various meetings on special topics – in the physical sciences in particular. The Society, as an association of the ISI, also collaborates with other ISI associations in the organization of the biennial ISI World Statistics Congresses (formerly ISI Sessions).

Executive Committee
Detailed information about the members of the Executive Committee can be found on http://www.bernoulli-society.org/who-is-who

The papers published in Bernoulli are indexed or abstracted in Mathematical Reviews (MathSciNet), Zentralblatt MATH (zbMATH Open), Science Citation Index Expanded (Web of Science), SCOPUS and Google Scholar.

©2022 International Statistical Institute/Bernoulli Society
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the Publisher.
In 2022 Bernoulli consists of 4 issues published in February, May, August and November.
A general framework for SPDE-based stationary random fields

RICARDO CARRIZO VERGARA1,4,*, DENIS ALLARD2 and NICOLAS DESASSIS3,1,†

1Arxitek, 4b rue Lemasson Henrion, 77250 Moret sur Loing et Orvanne, France. E-mail: *ricardo.carrizo_vergara@arxitek.fr; †nicolas.desassis@arxitek.fr
2Biostatistics and Spatial Processes, BioSP, INRAE, 84914, Avignon, France. E-mail: denis.allard@inrae.fr
3MINES ParisTech, PSL University, Geosciences, Geostatistics team, 35 rue St Honoré, 77300 Fontainebleau, France. E-mail: nicolas.desassis@mines-paristech.fr
4ENSIIE, 1 place de la Résistance, 91000, Evry-Courcouronnes, France. E-mail: ricardo.carrizovergara@ensie.fr; racarriz@uc.cl

This paper presents theoretical advances in the application of the Stochastic Partial Differential Equation (SPDE) approach in geostatistics. We show a general approach to construct stationary models related to a wide class of linear SPDEs, with applications to spatio-temporal models having non-trivial properties. Within the framework of Generalized Random Fields, a criterion for existence and uniqueness of stationary solutions for this class of SPDEs is proposed and proven. Their covariance are then obtained through their spectral measure. We present a result relating the covariance of the solution in the case of a White Noise source term with the covariance in a generic case through convolution. Then, we obtain a variety of SPDE-based stationary random fields. In particular, well-known results regarding the Matérn Model and Markovian models are recovered. A new relationship between the Stein model and a particular SPDE is obtained. New spatio-temporal models obtained from evolution SPDEs of arbitrary temporal derivative order are then obtained, for which properties of separability and symmetry can be controlled. We also obtain results concerning stationary solutions for physically inspired models, such as solutions to the heat equation, the advection-diffusion equation, some Langevin’s equations and the wave equation.

Keywords: Evolution equation; generalized random fields; matérn model; space-time geostatistics; SPDE approach; spectral measure; symbol function

References

Parameter estimation in branching processes with almost sure extinction

PETER BRAUNSTEINS 1,2,5,*+, SOPHIE HAUTPHENNE 2,5,‡ and CARMEN MINUESA 3,4,5,§,¶

1 Korteweg-de Vries Instituut, University of Amsterdam, Amsterdam, The Netherlands. E-mail: * p.t.m.braunsteins@uva.nl, 0000-0003-1864-0703

2 School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia. E-mail: † braunsteins.p@unimelb.edu.au; ‡ sophiemh@unimelb.edu.au, 0000-0002-8361-1901

3 Department of Mathematics, Autonomous University of Madrid, Madrid, Spain. E-mail: § carmen.minuesa@uam.es, 0000-0002-8858-3145

4 Department of Mathematics, University of Extremadura, Badajoz, Spain. E-mail: ¶ cminuesa@unex.es

5 All authors contributed equally to this work.

We consider population-size-dependent branching processes (PSDBPs) which eventually become extinct with probability one. For these processes, we derive maximum likelihood estimators for the mean number of offspring born to individuals when the current population size is $z \geq 1$. As is standard in branching process theory, an asymptotic analysis of the estimators requires us to condition on non-extinction up to a finite generation n and let $n \to \infty$; however, because the processes become extinct with probability one, we are able to demonstrate that our estimators do not satisfy the classical consistency property (C-consistency). This leads us to define the concept of Q-consistency, and we prove that our estimators are Q-consistent and asymptotically normal. To investigate the circumstances in which a C-consistent estimator is preferable to a Q-consistent estimator, we then provide two C-consistent estimators for subcritical Galton–Watson branching processes. Our results rely on a combination of linear operator theory, coupling arguments, and martingale methods.

Keywords: Branching process; population-size-dependence; almost sure extinction; inference; carrying capacity; Q-process

References

A note on eigenvalues estimates for one-dimensional diffusion operators

MICHEL BONNEFONT and ALDÉRIC JOULIN

1UMR CNRS 5251, Institut de Mathématiques de Bordeaux, Université Bordeaux 1, Bordeaux, France.
E-mail: michel.bonnefont@math.u-bordeaux.fr; url: http://www.math.u-bordeaux.fr/~mibonnef/
2UMR CNRS 5219, Institut de Mathématiques de Toulouse, Université de Toulouse, Toulouse, France.
E-mail: ajoulin@insa-toulouse.fr; url: http://perso.math.univ-toulouse.fr/joulin/

Dealing with one-dimensional diffusion operators, we obtain upper and lower variational formulae on the eigenvalues given by the max–min principle, generalizing the celebrated result of Chen and Wang on the spectral gap. Our inequalities reveal to be sharp at least when the eigenvalues considered belong to the discrete spectrum of the operator, since in this case both lower and upper bounds coincide and involve the associated eigenfunctions. Based on the intertwinings between diffusion operators and some convenient gradients with weights, our approach also allows to estimate the gap between the two first positive eigenvalues when the spectral gap belongs to the discrete spectrum.

Keywords: Diffusion operator; Schrödinger operator; intertwining; eigenvalues; spectral gap; max–min principle

References

Multiplier U-processes: Sharp bounds and applications

QIYANG HAN

Department of Statistics, Rutgers University, Piscataway, NJ 08854, USA.
E-mail: qh85@stat.rutgers.edu

The theory for multiplier empirical processes has been one of the central topics in the development of the classical theory of empirical processes, due to its wide applicability to various statistical problems. In this paper, we develop theory and tools for studying multiplier U-processes, a natural higher-order generalization of the multiplier empirical processes. To this end, we develop a multiplier inequality that quantifies the moduli of continuity of the multiplier U-process in terms of that of the (decoupled) symmetrized U-process. The new inequality finds a variety of applications including (i) multiplier and bootstrap central limit theorems for U-processes, (ii) general theory for bootstrap M-estimators based on U-statistics, and (iii) theory for M-estimation under general complex sampling designs, again based on U-statistics.

Keywords: U-process; multiplier inequality; bootstrap central limit theorem; bootstrap M-estimators; complex sampling design

References

Mean field limits for interacting Hawkes processes in a diffusive regime

XAVIER ERNY1,*, EVA LÖCHERBACH2 and DASHA LOUKIANOVA1,†

1Université Paris-Saclay, CNRS, Univ Evry, Laboratoire de Mathématiques et Modélisation d’Evry, 91037, Evry, France.
E-mail: *xavier.erny@univ-evry.fr; †dasha.loukianova@univ-evry.fr

2Statistique, Analyse et Modélisation Multidisciplinaire, Université Paris 1 Panthéon-Sorbonne, EA 4543 et FR FP2M 2036 CNRS, France.
E-mail: eva.locherbach@univ-paris1.fr

We consider a sequence of systems of Hawkes processes having mean field interactions in a diffusive regime. The stochastic intensity of each process is a solution of a stochastic differential equation driven by N independent Poisson random measures. We show that, as the number of interacting components N tends to infinity, this intensity converges in distribution in the Skorokhod space to a CIR-type diffusion. Moreover, we prove the convergence in distribution of the Hawkes processes to the limit point process having the limit diffusion as intensity. To prove the convergence results, we use analytical technics based on the convergence of the associated infinitesimal generators and Markovian semigroups.

Keywords: Multivariate nonlinear Hawkes processes; mean field interaction; piecewise deterministic Markov processes

References

Tree builder random walk: Recurrence, transience and ballisticity

GIULIO IACOBELLI1,*, RODRIGO RIBEIRO2, GLAUCO VALLE1,† and LEONEL ZUAZNÁBAR3

1UFRJ – Instituto de Matemática. Caixa Postal 68530, 21945-970, Rio de Janeiro, Brasil. E-mail: *giulio@im.ufrj.br; †glauco.valle@im.ufrj.br
2PUC Chile – Facultad de Matemáticas. Av. Vicuña Mackenna 4860, Macul, La Florida, Región Metropolitana, Chile. E-mail: rribeiro@impa.br
3USP – Instituto de Matemática e Estatística. R. do Matão, 1010 – Butantã, São Paulo – SP, CEP: 05508-090, Brasil. E-mail: lzuaznabar@ime.usp.br

The Tree Builder Random Walk is a special random walk that evolves on trees whose size increases with time, randomly and depending upon the walker. After every \(s \) steps of the walker, a random number of vertices are added to the tree and attached to the current position of the walker. These processes share similarities with other important classes of Markovian and non-Markovian random walks presenting a large variety of behaviors according to parameters specifications. We show that for a large and most significant class of tree builder random walks, the process is either null recurrent or transient. If \(s \) is odd, the walker is ballistic, thus transient. If \(s \) is even, the walker’s behavior can be explained from local properties of the growing tree and it can be either null recurrent or it gets trapped on some limited part of the growing tree.

\textbf{Keywords:} Random walks; random environment; random trees; transience; recurrence; ballisticity

\textbf{References}

Finite sample properties of parametric MMD estimation: Robustness to misspecification and dependence

BADR-EDDINE CHÉRIEF-ABDELLATIF and PIERRE ALQUIER

1Department of Statistics, University of Oxford.
E-mail: badr-eddine.cherief-abdellatif@stats.ox.ac.uk
2RIKEN AIP, Tokyo, Japan.
E-mail: pierrealain.alquier@riken.jp

Many works in statistics aim at designing a universal estimation procedure, that is, an estimator that would converge to the best approximation of the (unknown) data generating distribution in a model, without any assumption on this distribution. This question is of major interest, in particular because the universality property leads to the robustness of the estimator. In this paper, we tackle the problem of universal estimation using a minimum distance estimator presented in (Briol et al. (2019)) based on the Maximum Mean Discrepancy. We show that the estimator is robust to both dependence and to the presence of outliers in the dataset. Finally, we provide a theoretical study of the stochastic gradient descent algorithm used to compute the estimator, and we support our findings with numerical simulations.

Keywords: Minimum distance estimation; kernel methods; universal estimation; robust statistics; RKHS; weak dependence

References

Limit theorems for time-dependent averages of nonlinear stochastic heat equations

KUNWOO KIM* and JAEYUN YI†

Department of Mathematics, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea.
E-mail: * kunwoo@postech.ac.kr, † stork@postech.ac.kr

We study limit theorems for time-dependent averages of the form

\[X_t := \frac{1}{2L(t)} \int_{-L(t)}^{L(t)} u(t, x) \, dx \]

as \(t \to \infty \), where \(L(t) = \exp(\lambda t) \) and \(u(t, x) \) is the solution to a stochastic heat equation on \(\mathbb{R}_+ \times \mathbb{R} \) driven by space-time white noise with \(u_0(x) = 1 \) for all \(x \in \mathbb{R} \). We show that for \(X_t \)

(i) the weak law of large numbers holds when \(\lambda > \lambda_1 \),
(ii) the strong law of large numbers holds when \(\lambda > \lambda_2 \),
(iii) the central limit theorem holds when \(\lambda > \lambda_3 \), but fails when \(\lambda < \lambda_4 \leq \lambda_3 \),
(iv) the quantitative central limit theorem holds when \(\lambda > \lambda_5 \),

where \(\lambda_i \)'s are positive constants depending on the moment Lyapunov exponents of \(u(t, x) \).

Keywords: Stochastic heat equation; weak law of large numbers; strong law of large numbers; central limit theorem

References

In the past decades, the central limit theorem (CLT) has been generalized to non-Euclidean data spaces. Some years ago, it was found that for some random variables on the circle, the sample Fréchet mean fluctuates around the population mean asymptotically at a scale $n^{-\tau}$ with exponent $\tau < 1/2$ with a non-normal distribution if the probability density at the antipodal point of the mean is $\frac{1}{2\pi}$. The author and his collaborator recently discovered that $\tau = \frac{1}{6}$ for some random variables on higher dimensional spheres. In this article we show that, even more surprisingly, the phenomenon on spheres of higher dimension is qualitatively different from that on the circle, as it depends purely on geometrical properties of the space, namely its curvature, and not on the density at the antipodal point. This gives rise to the new concept of geometrical smeariness. In consequence, the sphere can be deformed, say, by removing a neighborhood of the antipodal point of the mean and gluing a flat space there, with a smooth transition piece. This yields smeariness on a manifold, which is diffeomorphic to Euclidean space. We give an example family of random variables with 2-smeariness, that is, with $\tau = 1/6$, whose range has a hole containing the cut locus of the mean. The hole size exhibits a curse of dimensionality as it can increase with dimension, converging to the whole hemisphere opposite a local Fréchet mean. We observe smeariness in simulated landmark shapes on Kendall pre-shape space and in real data of geomagnetic north pole positions on the two-dimensional sphere.

Keywords: Fréchet means; asymptotics on manifolds; lower asymptotic rate; directional data; landmark shapes

References

Nonhomogeneous Euclidean first-passage percolation and distance learning

PABLO GROISMAN1,2, MATTHIEU JONCKHEERE3 and FACUNDO SAPIENZA4

1IMAS-CONICET, Departamento de Matemática, Fac. Cs. Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
E-mail: pgroisma@dm.uba.ar
2NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai, Shanghai, China.
E-mail: pgroisma@nyu.edu
3Instituto de Calculo-CONICET, Fac. Cs. Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
E-mail: mjonckhe@dm.uba.ar
4Aristas SRL, Buenos Aires, Argentina.
E-mail: f.sapienza@aristas.com.ar

Consider an i.i.d. sample from an unknown density function supported on an unknown manifold embedded in a high dimensional Euclidean space. We tackle the problem of learning a distance between points, able to capture both the geometry of the manifold and the underlying density. We define such a sample distance and prove the convergence, as the sample size goes to infinity, to a macroscopic one that we call Fermat distance as it minimizes a path functional, resembling Fermat principle in optics. The proof boils down to the study of geodesics in Euclidean first-passage percolation for nonhomogeneous Poisson point processes.

Keywords: Distance learning; Euclidean first-passage percolation; nonhomogeneous point processes

References

We determine the exact Hausdorff measure functions for the range and level sets of a class of Gaussian random fields satisfying sectorial local nondeterminism and other assumptions. We also establish a Chung-type law of the iterated logarithm. The results can be applied to the Brownian sheet, fractional Brownian sheets whose Hurst indices are the same in all directions, and systems of linear stochastic wave equations in one spatial dimension driven by space–time white noise or colored noise.

Keywords: Gaussian random fields; Hausdorff measure; local nondeterminism; Brownian sheet; harmonizable representation

References

Information geometry approach to parameter estimation in hidden Markov model

MASAHITO HAYASHI1,2,3,4,5,6,7

1Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
2Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
3Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
4Graduate School of Mathematics, Nagoya University, Nagoya, 464-8602, Japan
5Center for Advanced Intelligence Project, RIKEN, Tokyo, 103-0027, Japan
6Centre for Quantum Technologies, National University of Singapore, 117543, Singapore
7Center for Quantum Computing, Peng Cheng Laboratory, Shenzhen, 518066, China.
E-mail: hayashi@sustech.edu.cn; masahito@math.nagoya-u.ac.jp

We consider the estimation of the transition matrix of a hidden Markovian process by using information geometry with respect to transition matrices. In this paper, only the histogram of k-memory data is used for the estimation. To establish our method, we focus on a partial observation model with the Markovian process and we propose an efficient estimator whose asymptotic estimation error is given as the inverse of projective Fisher information of transition matrices. This estimator is applied to the estimation of the transition matrix of the hidden Markovian process. In this application, we carefully discuss the equivalence problem for hidden Markovian process on the tangent space.

Keywords: Hidden Markov; em-algorithm; projective Fisher information matrix; partial observation model

References

In this paper, we study the averaging principle for a class of stochastic differential equations driven by α-stable processes with slow and fast time-scales, where $\alpha \in (1, 2)$. We prove that the strong and weak convergence order are $1 - 1/\alpha$ and 1 respectively. We show, by a simple example, that $1 - 1/\alpha$ is the optimal strong convergence rate.

Keywords: Averaging principle; α-stable process; slow–fast system; convergence rates

References

Applications of weak transport theory

J. BACKHOFF-VERAGUAS1 and G. PAMMER2

1Universität Wien, Vienna, Austria.
E-mail: julio.backhoff@univie.ac.at
2ETH, Zürich, Switzerland.
E-mail: gudmund.pammer@math.ethz.ch

Motivated by applications to geometric inequalities, Gozlan, Roberto, Samson, and Tetali (J. Funct. Anal. 273 (2017) 3327–3405) introduced a transport problem for ‘weak’ cost functionals. Basic results of optimal transport theory can be extended to this setup in remarkable generality.

In this article, we collect several problems from different areas that can be recast in the framework of weak transport theory, namely: the Schrödinger problem, the Brenier–Strassen theorem, optimal mechanism design, linear transfers, semimartingale transport. Our viewpoint yields a unified approach and often allows to strengthen the original results.

\textbf{Keywords:} Schrödinger problem; Brenier–Strassen theorem; linear transfers; semimartingale transport; optimal mechanism design; weak transport problem; duality; cyclical monotonicity

\textbf{References}

On bandwidth selection problems in nonparametric trend estimation under martingale difference errors

KARIM BENHENNI1,*, DIDIER A. GIRARD2 and SANA LOUHICHI1,†

1Laboratoire Jean Kuntzmann, Université Grenoble Alpes, 700 Avenue Centrale, 38401 Saint-Martin-d’Hères, France.
E-mail: *karim.benhenni@univ-grenoble-alpes.fr; †sana.louhichi@univ-grenoble-alpes.fr
2CNRS, Laboratoire Jean Kuntzmann, 700 Avenue Centrale, 38401 Saint-Martin-d’Hères, France.
E-mail: didier.girard@univ-grenoble-alpes.fr

In this paper, we are interested in the problem of smoothing parameter selection in nonparametric curve estimation under dependent errors. We focus on kernel estimation and the case when the errors form a general stationary sequence of martingale difference random variables where neither linearity assumption nor “all moments are finite” are required. We compare the behaviors of the smoothing bandwidths obtained by minimizing either the unknown average squared error, the theoretical mean average squared error, a Mallows-type criterion adapted to the dependent case and the family of criteria known as generalized cross validation (GCV) extensions of the Mallows’ criterion. We prove that these three minimizers and those based on the GCV family are first-order equivalent in probability. We give also a normal asymptotic behavior of the gap between the minimizer of the average squared error and that of the Mallows-type criterion. This is extended to the GCV family. Finally, we apply our theoretical results to a specific case of martingale difference sequence, namely the Auto-Regressive Conditional Heteroscedastic (ARCH(1)) process. A Monte-Carlo simulation study, for this regression model with ARCH(1) process, is conducted.

Keywords: Nonparametric trend estimation; kernel nonparametric models; smoothing parameter selection; martingale difference sequences; average squared error; mean average squared error; Mallows criterion; cross validation; generalized cross validation; ARCH(1)

References

New approach to greedy vector quantization

RANCY EL NMEIR¹,²,* HARALD LUSCHGY³ and GILLES PAGÈS¹,†

¹Laboratoire de Probabilités, Statistique et Modélisation, Sorbonne Université, Campus Pierre et Marie Curie, case 158, 4, pl. Jussieu, F-75252 Paris Cedex 5, France.
E-mail: * rancynmeir@gmail.com; † gilles.pages@sorbonne-universite.fr
²Laboratoire de Mathématiques et Applications, Université Saint-Joseph de Beyrouth, B.P. 11-514 Riad El Solh Beyrouth 1107 2050, Liban
³FB IV-Mathematik, Universität Trier, D-54286 Trier, Germany.
E-mail: luschgy@uni-trier.de

We extend some rate of convergence results of greedy quantization sequences already investigated in 2015. We show, for a more general class of distributions satisfying a certain control, that the quantization error of these sequences has an optimal rate of convergence and that the distortion mismatch property is satisfied. We will give some non-asymptotic Pierce type estimates. The recursive character of greedy vector quantization allows some improvements to the algorithm of computation of these sequences and the implementation of a recursive formula to quantization-based numerical integration. Furthermore, we establish further properties of sub-optimality of greedy quantization sequences.

Keywords: Greedy quantization sequence; rate optimality; Lloyd’s algorithm; distortion mismatch; quantization-based numerical integration; quasi-Monte Carlo methods

References

Empirical process theory for locally stationary processes

NATHAWUT PHANDOIDAEN* and STEFAN RICHTER†

Institut für angewandte Mathematik, Universität Heidelberg, Im Neuenheimer Feld 205, Heidelberg, Germany.
E-mail: *phandoidaen@math.uni-heidelberg.de; †stefan.richter@iwr.uni-heidelberg.de

We provide a framework for empirical process theory of locally stationary processes using the functional dependence measure. Our results extend known results for stationary Markov chains and mixing sequences by another common possibility to measure dependence and allow for additional time dependence. Our main result is a functional central limit theorem for locally stationary processes. Moreover, maximal inequalities for expectations of sums are developed. We show the applicability of our theory in some examples, for instance, we provide uniform convergence rates for nonparametric regression with locally stationary noise.

Keywords: Empirical process theory; functional dependence measure; maximal inequality; functional central limit theorem; locally stationary processes

References

Crandall–Lions viscosity solutions for path-dependent PDEs: The case of heat equation

ANDREA COSSO¹ and FRANCESCO RUSSO²

¹University of Bologna, Department of Mathematics, Piazza di Porta San Donato 5, 40126 Bologna, Italy. E-mail: andrea.cosso@unibo.it
²ENSTA Paris, Institut Polytechnique de Paris, Unité de Mathématiques Appliquées, 828, bd. des Maréchaux, F-91120 Palaiseau, France. E-mail: francesco.russo@ensta-paris.fr

We address our interest to the development of a theory of viscosity solutions à la Crandall–Lions for path-dependent partial differential equations (PDEs), namely PDEs in the space of continuous paths $C([0, T]; \mathbb{R}^d)$. Path-dependent PDEs can play a central role in the study of certain classes of optimal control problems, as for instance optimal control problems with delay. Typically, they do not admit a smooth solution satisfying the corresponding HJB equation in a classical sense, it is therefore natural to search for a weaker notion of solution. While other notions of generalized solution have been proposed in the literature, the extension of the Crandall–Lions framework to the path-dependent setting is still an open problem. The question of uniqueness of the solutions, which is the most delicate issue, will be based on early ideas from the theory of viscosity solutions and a suitable variant of Ekeland’s variational principle. This latter is based on the construction of a smooth gauge-type function, where smooth is meant in the horizontal/vertical (rather than Fréchet) sense. In order to make the presentation more readable, we address the path-dependent heat equation, which in particular simplifies the smoothing of its natural “candidate” solution. Finally, concerning the existence part, we provide a functional Itô formula under general assumptions, extending earlier results in the literature.

Keywords: Path-dependent partial differential equations; viscosity solutions; functional Itô formula

References

Adaptive estimation in the linear random coefficients model when regressors have limited variation

CHRISTOPHE GAILLAC* and ERIC GAUTIER†

Toulouse School of Economics, Université Toulouse Capitole, 1 esplanade de l’université, 31000 Toulouse, France. E-mail: *christophe.gaillac@tse-fr.eu; †eric.gautier@tse-fr.eu

We consider a linear model where the coefficients – intercept and slopes – are random and independent from the regressors. The law of the coefficients is nonparametric. Without further restriction, nonparametric identification requires the regressors to have a support which is the whole space. This is hardly ever the case in practice. It is possible to handle regressors with limited variation when the coefficients can have a compact support. This is not compatible with unbounded error terms as usual in regression models. In this paper, the regressors can have a support which is a proper subset but the slopes do not have heavy-tails. Lower bounds on the minimax risk for the estimation of the joint density of the random coefficients density are obtained for a wide range of smoothness. Some allow for polynomial and nearly parametric rates of convergence. We present a minimax optimal estimator and a data-driven rule for adaptive estimation. A R package is available to implement this estimator.

Keywords: Adaptation; inverse problem; minimax; random coefficients

References

Testing and estimation for clustered signals

HONGYUAN CAO1,2 and WEI BIAO WU3

1School of Mathematics, Jilin University, 2699 Qianjing Street, Changchun, 130012, China
2Department of Statistics, Florida State University, 117 N. Woodward Avenue, Tallahassee, FL, 32306, USA.
E-mail: hongyuancao@gmail.com
3Department of Statistics, University of Chicago, 5747 South Ellis Avenue, Chicago, IL, 60637, USA.
E-mail: wbwuchicago@gmail.com

We propose a change-point detection method for large scale multiple testing problems with data having clustered signals. Unlike the classic change-point setup, the signals can vary in size within a cluster. The clustering structure on the signals enables us to effectively delineate the boundaries between signal and non-signal segments. New test statistics are proposed for observations from one and/or multiple realizations. Their asymptotic distributions are derived. We also study the associated variance estimation problem. We allow the variances to be heteroscedastic in the multiple realization case, which substantially expands the applicability of the proposed method. Simulation studies demonstrate that the proposed approach has a favorable performance. Our procedure is applied to an array based Comparative Genomic Hybridization (aCGH) dataset.

Keywords: Change-point inference; clustered signal; high dimension; multiple testing; signal aggregation; variance estimation

References

Adaptiveness of the empirical distribution of residuals in semi-parametric conditional location scale models

CHRISTIAN FRANCQ* and JEAN-MICHEL ZAKOÏAN†
CREST-ENSAE, 5 Avenue Henri Le Chatelier, 91120 Palaiseau, France.
E-mail: *christian.francq@ensae.fr; †zakoian@ensae.fr

This paper addresses the problem of deriving the asymptotic distribution of the empirical distribution function \(\hat{F}_n \) of the residuals in a general class of time series models, including conditional mean and conditional heteroscedasticity, whose independent and identically distributed errors have unknown distribution \(F \). We show that, for a large class of time series models (including the standard ARMA-GARCH with symmetric innovations), the asymptotic distribution of \(\sqrt{n}(\hat{F}_n(\cdot) - F(\cdot)) \) is impacted by the estimation but does not depend on the model parameters. It is thus neither asymptotically estimation free, as is the case for purely linear models, nor asymptotically model dependent, as is the case for some nonlinear models. The asymptotic stochastic equicontinuity is also established. We consider an application to the estimation of the conditional Value-at-Risk.

Keywords: Adaptive estimation; GARCH; empirical distribution of residuals; asymptotic distribution of quantiles; stochastic equicontinuity; conditional VaR

References

Minimax optimal goodness-of-fit testing for densities and multinomials under a local differential privacy constraint

JOSEPH LAM-WEIL\(^1\), BÉATRICE LAURENT\(^2\) and JEAN-MICHEL LOUBES\(^3\)

\(^1\)Otto von Guericke Magdeburg University, Universitätspl. 2, 39106 Magdeburg, Germany. E-mail: joseph.lam@ovgu.de
\(^2\)Institut de Mathématiques de Toulouse (UMR 5219), INSA Toulouse, Université de Toulouse, 135 avenue de
Rangueil, 31400 Toulouse, France. E-mail: laurentb@insa-toulouse.fr
\(^3\)Institut de Mathématiques de Toulouse (UMR 5219), Université Paul Sabatier, Université de Toulouse, 135 avenue de
Rangueil, 31400 Toulouse, France. E-mail: loubes@math.univ-toulouse.fr

Finding anonymization mechanisms to protect personal data is at the heart of recent machine learning research. Here, we consider the consequences of local differential privacy constraints on goodness-of-fit testing, that is, the statistical problem assessing whether sample points are generated from a fixed density \(f_0\), or not. The observations are kept hidden and replaced by a stochastic transformation satisfying the local differential privacy constraint. In this setting, we propose a testing procedure which is based on an estimation of the quadratic distance between the density \(f\) of the unobserved samples and \(f_0\). We establish an upper bound on the separation distance associated with this test, and a matching lower bound on the minimax separation rates of testing under non-interactive privacy in the case that \(f_0\) is uniform, in discrete and continuous settings. To the best of our knowledge, we provide the first minimax optimal test and associated private transformation under a local differential privacy constraint over Besov balls in the continuous setting, quantifying the price to pay for data privacy. We also present a test that is adaptive to the smoothness parameter of the unknown density and remains minimax optimal up to a logarithmic factor. Finally, we note that our results can be translated to the discrete case, where the treatment of probability vectors is shown to be equivalent to that of piecewise constant densities in our setting. That is why we work with a unified setting for both the continuous and the discrete cases.

Keywords: Local differential privacy; non-interactive privacy; goodness-of-fit testing; minimax separation rates; continuous and discrete distributions

References

Erratum for
Prediction and estimation consistency of sparse multi-class penalized optimal scoring

IRINA GAYNANOVA

Department of Statistics, Texas A&M University, MS 3143, College Station, TX 77843, USA.
E-mail: irinag@stat.tamu.edu

Correction to the proof of Theorem 3 in Gaynanova (2020) Bernoulli 26 286–322.

Keywords: Classification; high-dimensional regression; sub-exponential marginals

References

On eigenvalues of a high-dimensional spatial-sign covariance matrix

WEIMING LI1, QINWEN WANG2, JIANFENG YAO3 and WANG ZHOU4

1School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China. E-mail: li.weiming@shufe.edu.cn
2School of Data Science, Fudan University, Shanghai, China. E-mail: wqw@fudan.edu.cn
3Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China. E-mail: jeffyao@hku.hk
4Department of Statistics and Applied Probability, National University of Singapore, Singapore, 117546.. E-mail: stazw@nus.edu.sg

This paper investigates limiting spectral properties of a high-dimensional sample spatial-sign covariance matrix when both the dimension of the observations and the sample size grow to infinity. The underlying population is general enough to include the popular independent components model and the family of elliptical distributions. The first result of the paper shows that the empirical spectral distribution of a high dimensional sample spatial-sign covariance matrix converges to a generalized Marčenko-Pastur distribution. Secondly, a new central limit theorem for a class of related linear spectral statistics is established.

Keywords: Central limit theorem; eigenvalue distribution; linear spectral statistics; spatial-sign covariance matrix

References

Thinned completely random measures with applications in competing risks models

JOHN W. LAU* and EDWARD CRIPPS†

Department of Mathematics and Statistics, University of Western Australia, Perth, Australia.
E-mail: *john.w.lau@gmail.com; †edward.cripps@uwa.edu.au

We present a posterior analysis of kernel mixtures of thinned completely random measures (CRMs) for multivariate intensities, in the context of competing risks models. The construction of the thinned CRMs is derived from a common Poisson random measure that includes the thinning probabilities in its intensity and is transferable to existing Poisson partition calculus results for the posterior analysis (James (2002; Ann. Statist. 33 (2005) 1771–1799)). We derive the posterior thinned CRMs, provide generalizations of both the Blackwell and MacQueen Pólya urn formula and the (weighted) Chinese restaurant process for the variates and partitions generated from the thinned CRMs, and we outline strategies for the further development of Monte Carlo simulation for estimation.

Keywords: Completely random measures; thinning; Bayesian non-parametrics

References

Mixing properties of non-stationary INGARCH(1, 1) processes

PAUL DOUKHAN1, ANNE LEUCHT2 and MICHAEL H. NEUMANN3

1UMR 8088 Analyse, Géométrie et Modélisation, CY University, 2, avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France.
E-mail: doukhan@cyu.fr
2Research Group of Statistics and Mathematics, Universität Bamberg, Feldkirchenstraße 21, D – 96052 Bamberg, Germany.
E-mail: anne.leucht@uni-bamberg.de
3Institut für Mathematik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, D – 07743 Jena, Germany.
E-mail: michael.neumann@uni-jena.de

We derive mixing properties for a broad class of Poisson count time series satisfying a certain contraction condition. Using specific coupling techniques, we prove absolute regularity at a geometric rate not only for stationary Poisson-GARCH processes but also for models with an explosive trend. We provide easily verifiable sufficient conditions for absolute regularity for a variety of models including classical (log-)linear models. Finally, we illustrate the practical use of our results for hypothesis testing.

Keywords: Absolute regularity; coupling; INGARCH; mixing

References

A Ray–Knight representation of up-down Chinese restaurants

DANE ROGERS* and MATTHIAS WINKEL†

E-mail: * danejrogers@protonmail.com; †winkel@stats.ox.ac.uk

We study composition-valued continuous-time Markov chains that appear naturally in the framework of Chinese Restaurant Processes (CRPs). As time evolves, new customers arrive (up-step) and existing customers leave (down-step) at suitable rates derived from the ordered CRP of Pitman and Winkel (Ann. Probab. 37 (2009) 1999–2041). We relate such up-down CRPs to the splitting trees of Lambert (Ann. Probab. 38 (2010) 348–395) inducing spectrally positive Lévy processes. Conversely, we develop theorems of Ray–Knight type to recover more general up-down CRPs from the heights of Lévy processes with jumps marked by integer-valued paths. We further establish limit theorems for the Lévy process and the integer-valued paths to connect to work by Forman, Pal, Rizzolo, Shi and Winkel on interval partition diffusions and hence to some long-standing conjectures.

Keywords: Chinese Restaurant Process; composition; Ray–Knight theorem; scaling limit; squared Bessel process; stable process

References

