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Functional estimation in high-dimensional and
infinite-dimensional models
VLADIMIR KOLTCHINSK IIa and MINGHAO LIb

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA, avlad@math.gatech.edu,
bminghaoli@gatech.edu

Let 𝒫 be a family of probability measures on a measurable space (𝑆,𝒜). Given a Banach space 𝐸 , a functional
𝑓 : 𝐸 ↦→ ℝ and a mapping 𝜃 : 𝒫 ↦→ 𝐸 , our goal is to estimate 𝑓 (𝜃 (𝑃)) based on i.i.d. observations 𝑋1, . . . , 𝑋𝑛 ∼

𝑃, 𝑃 ∈ 𝒫. Given a smooth functional 𝑓 and estimators 𝜃𝑛 (𝑋1, . . . , 𝑋𝑛), 𝑛 ≥ 1 of 𝜃 (𝑃), we use these estimators,
the sample split and the Taylor expansion of 𝑓 (𝜃 (𝑃)) of a proper order to construct estimators 𝑇 𝑓 (𝑋1, . . . , 𝑋𝑛) of
𝑓 (𝜃 (𝑃)). For these estimators and for a functional 𝑓 of smoothness 𝑠 ≥ 1, we derive upper bounds on the 𝐿𝑝-errors
of 𝑇 𝑓 (𝑋1, . . . , 𝑋𝑛) with optimal dependence on sample size 𝑛, on the dimension or other complexity characteristics
of parameter and on degree 𝑠 of smoothness of the functional, and also study asymptotic normality and asymptotic
efficiency of these estimators. The examples include functional estimation in high-dimensional models with many
low dimensional components, functional estimation in high-dimensional exponential families and estimation of
functionals of covariance operators in infinite-dimensional subgaussian models.

Keywords: Asymptotic efficiency; covariance operator; effective rank; exponential family; minimax optimality;
smooth functionals
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Bernstein duality revisited:
Frequency-dependent selection, coordinated
mutation and opposing environments
FER NANDO COR DERO1,2,a,b , SEBASTIAN HUMMEL3,c and
GRÉGOIR E VÉCHAMBR E4,d

1Institute of Mathematics, Department of Natural Sciences and Sustainable Ressources, BOKU University,
Austria, afernando.cordero@boku.ac.at
2Faculty of Technology, Bielefeld University, Germany, bfcordero@techfak.uni-bielefeld.de
3Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland, cshummel@hest.ethz.ch
4State Key Laboratory of Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese
Academy of Sciences, Beijing, China, dvechambre@amss.ac.cn

This paper investigates the long-term behavior of a class of Λ-Wright–Fisher processes incorporating frequency-
dependent selection, coordinated (bidirectional) selection, as well as individual and coordinated mutation. Our
primary analytical tool is Bernstein duality, a generalization of moment duality. We introduce the corresponding
dual process and establish the relevant duality relation. Without mutation, this work complements earlier studies
that employed moment duality, Siegmund duality or other methods to classify the long-term behavior of similar
processes. Notably, the current analysis encompasses parameter regimes that model bidirectional selection, a
scenario that has proven challenging to analyze using moment duality. In the presence of mutation, we establish
the ergodic properties of the process.

Keywords: Branching-coalescing particle system; coordination; duality; frequency-dependent selection;
Λ-Wright–Fisher processes; random environment
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We introduce a general class of autoregressive models for studying the dynamic of multivariate binary time series
with stationary exogenous covariates. We first show that existence of a stationary path for such models is almost
automatic and does not require parameter restrictions when the noise term is not compactly supported. We then
study in details statistical inference in a dynamic version of a multivariate probit type model, as a particular case of
our general construction. To avoid a complex likelihood optimization, we combine pseudo-likelihood and pairwise
likelihood methods for which asymptotic results are obtained for a single path analysis and also for panel data,
using ergodic theorems for multi-indexed partial sums. The latter scenario is particularly important for analyzing
absence-presence of species in ecology, a field where data are often collected from surveys at various locations.
Our results also give a theoretical background for such models which are often used by the practitioners but without
a probabilistic framework.

Keywords: Binary time series; ergodic properties of multiple parameters processes; iterated random maps

References
Ashford, J. and Sowden, R. (1970). Multi-variate probit analysis. Biometrics 26 535–546.
Banys, P., Davydov, Y. and Paulauskas, V. (2010). Remarks on the SLLN for linear random fields. Statist. Probab.

Lett. 80 489–496. MR2593590 https://doi.org/10.1016/j.spl.2009.11.026
Candelon, B., Dumitrescu, E.-I., Hurlin, C. and Palm, F.C. (2013). Multivariate dynamic probit models: An appli-

cation to financial crises mutation. In VAR Models in Macroeconomics–New Developments and Applications:
Essays in Honor of Christopher A. Sims 395–427. Limited: Emerald Group Publishing. MR3496842 https://doi.
org/10.1108/S0731-905320130000031011

Chaubert, F., Mortier, F. and Saint André, L. (2008). Multivariate dynamic model for ordinal outcomes. J. Multi-
variate Anal. 99 1717–1732. MR2526172 https://doi.org/10.1016/j.jmva.2008.01.011

Chib, S. and Greenberg, E. (1998). Analysis of multivariate probit models. Biometrika 85 347–361.
De Jong, R.M. and Woutersen, T. (2011). Dynamic time series binary choice. Econometric Theory 27 673–702.

MR2822362 https://doi.org/10.1017/S0266466610000472
Debaly, Z.M., Neumann, M.H. and Truquet, L. (2025). Mixing properties of nonstationary multivariate count

processes. J. Time Series Anal. 46 552–581. MR4888809 https://doi.org/10.1111/jtsa.12775
Debaly, Z.M. and Truquet, L. (2021). Iterations of dependent random maps and exogeneity in nonlinear dynamics.

Econometric Theory 37 1135–1172. MR4348399 https://doi.org/10.1017/S0266466620000559
Fernández-Val, I. and Weidner, M. (2016). Individual and time effects in nonlinear panel models with large N, T.

J. Econometrics 192 291–312. MR3463676 https://doi.org/10.1016/j.jeconom.2015.12.014
Fokianos, K. and Truquet, L. (2019). On categorical time series models with covariates. Stochastic Process. Appl.

129 3446–3462. MR3985569 https://doi.org/10.1016/j.spa.2018.09.012
Franchi, G. and Truquet, L. (2026). Supplement to “Theory and inference for multivariate autoregressive

binary models and dynamical modeling of absence-presence data in ecology.” https://doi.org/10.3150/25-
BEJ1885SUPP

1350-7265 © 2026 ISI/BS

https://www.bernoullisociety.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/25-BEJ1885
mailto:guillaume.franchi@ensai.fr
mailto:lionel.truquet@ensai.fr
https://mathscinet.ams.org/mathscinet-getitem?mr=2593590
https://doi.org/10.1016/j.spl.2009.11.026
https://mathscinet.ams.org/mathscinet-getitem?mr=3496842
https://doi.org/10.1108/S0731-905320130000031011
https://doi.org/10.1108/S0731-905320130000031011
https://mathscinet.ams.org/mathscinet-getitem?mr=2526172
https://doi.org/10.1016/j.jmva.2008.01.011
https://mathscinet.ams.org/mathscinet-getitem?mr=2822362
https://doi.org/10.1017/S0266466610000472
https://mathscinet.ams.org/mathscinet-getitem?mr=4888809
https://doi.org/10.1111/jtsa.12775
https://mathscinet.ams.org/mathscinet-getitem?mr=4348399
https://doi.org/10.1017/S0266466620000559
https://mathscinet.ams.org/mathscinet-getitem?mr=3463676
https://doi.org/10.1016/j.jeconom.2015.12.014
https://mathscinet.ams.org/mathscinet-getitem?mr=3985569
https://doi.org/10.1016/j.spa.2018.09.012
https://doi.org/10.3150/25-BEJ1885SUPP
https://doi.org/10.3150/25-BEJ1885SUPP


902 G. Franchi and L. Truquet

Giap, D.X. and Van Quang, N. (2016). Multidimensional and multivalued ergodic theorems for measure-preserving
transformations. Set-Valued Var. Anal. 24 637–658. MR3570348 https://doi.org/10.1007/s11228-016-0361-z

Greene, W. (2009). Discrete choice modeling. In In Palgrave Handbook of Econometrics. Applied Econometrics 2
473–556. Springer.

Guanche, Y., Minguez, R. and Méndez, F.J. (2014). Autoregressive logistic regression applied to atmospheric
circulation patterns. Clim. Dyn. 42 537–552.

Hahn, J. and Kuersteiner, G. (2011). Bias reduction for dynamic nonlinear panel models with fixed effects.
Econometric Theory 27 1152–1191. MR2868837 https://doi.org/10.1017/S0266466611000028

Hajivassiliou, V.A. and Ruud, P.A. (1994). Classical estimation methods for LDV models using simulation. Handb.
Econom. 4 2383–2441. MR1315975

Hsiao, C. (2022). Analysis of Panel Data 64. Cambridge University Press. MR4615778 https://doi.org/10.1017/
9781009057745

Jentsch, C. and Reichmann, L. (2022). Generalized binary vector autoregressive processes. J. Time Series Anal. 43
285–311. MR4400295 https://doi.org/10.1111/jtsa.12614

Kenne Pagui, E.C. and Canale, A. (2016). Pairwise likelihood inference for multivariate ordinal responses with
applications to customer satisfaction. Appl. Stoch. Models Bus. Ind. 32 273–282. MR3488020 https://doi.org/
10.1002/asmb.2147

Klesov, O. and Molchanov, I. (2017). Moment conditions in strong laws of large numbers for multiple sums and
random measures. Statist. Probab. Lett. 131 56–63. MR3706696 https://doi.org/10.1016/j.spl.2017.08.007

Krengel, U. (2011). Ergodic Theorems 6. Walter de Gruyter. MR0797411 https://doi.org/10.1515/9783110844641
Liesenfeld, R. and Richard, J.-F. (2010). Efficient estimation of probit models with correlated errors. J. Econometrics

156 367–376. MR2609939 https://doi.org/10.1016/j.jeconom.2009.11.006
Manner, H., Türk, D. and Eichler, M. (2016). Modeling and forecasting multivariate electricity price spikes. Energy

Econ. 60 255–265.
Manski, C.F. (1975). Maximum score estimation of the stochastic utility model of choice. J. Econometrics 3

205–228. MR0436905 https://doi.org/10.1016/0304-4076(75)90032-9
Masarotto, G. and Varin, C. (2012). Gaussian copula marginal regression. Electron. J. Stat. 6 1517–1549.

MR2988457 https://doi.org/10.1214/12-EJS721
Müller, G. and Czado, C. (2005). An autoregressive ordered probit model with application to high-frequency

financial data. J. Comput. Graph. Statist. 14 320–338. MR2160816 https://doi.org/10.1198/106186005X48687
Nguyen, X.X. and Zessin, H. (1979). Ergodic theorems for spatial processes. Z. Wahrsch. Verw. Gebiete 48

133–158. MR0534841 https://doi.org/10.1007/BF01886869
Park, J.Y. and Phillips, P.C. (2000). Nonstationary binary choice. Econometrica 68 1249–1280. MR1779149 https://

doi.org/10.1111/1468-0262.00157
Poggiato, G., Münkemüller, T., Bystrova, D., Arbel, J., Clark, J.S. and Thuiller, W. (2021). On the interpretations

of joint modeling in community ecology. Trends Ecol. Evol. 36 391–401.
Propp, J.G. and Wilson, D.B. (1996). Exact sampling with coupled Markov chains and applications to statis-

tical mechanics. Random Structures Algorithms 9 223–252. MR1611693 https://doi.org/10.1002/(sici)1098-
2418(199608/09)9:1/2&lt;223::aid-rsa14&gt;3.0.co;2-o

Samorodnitsky, G. et al. (2016). Stochastic Processes and Long Range Dependence 26. Springer. MR3561100
https://doi.org/10.1007/978-3-319-45575-4

Sebastian-Gonzalez, E., Sanchez-Zapata, J.A., Botella, F. and Ovaskainen, O. (2010). Testing the heterospecific
attraction hypothesis with time-series data on species co-occurrence. Proc. R. Soc. Lond., B Biol. Sci. 277
2983–2990.

Smythe, R.T. (1973). Strong laws of large numbers for 𝑟-dimensional arrays of random variables. Ann. Probab. 1
164–170. MR0346881 https://doi.org/10.1214/aop/1176997031

Talhouk, A., Doucet, A. and Murphy, K. (2012). Efficient Bayesian inference for multivariate probit models with
sparse inverse correlation matrices. J. Comput. Graph. Statist. 21 739–757. MR2970917 https://doi.org/10.
1080/10618600.2012.679239

Ting, B., Wright, F. and Zhou, Y.-H. (2022). Fast multivariate probit estimation via a two-stage composite likelihood.
Stat. Biosci. 14 533–549.

Truquet, L. (2020). Coupling and perturbation techniques for categorical time series. Bernoulli 26 3249–3279.
MR4140544 https://doi.org/10.3150/20-BEJ1225

https://mathscinet.ams.org/mathscinet-getitem?mr=3570348
https://doi.org/10.1007/s11228-016-0361-z
https://mathscinet.ams.org/mathscinet-getitem?mr=2868837
https://doi.org/10.1017/S0266466611000028
https://mathscinet.ams.org/mathscinet-getitem?mr=1315975
https://mathscinet.ams.org/mathscinet-getitem?mr=4615778
https://doi.org/10.1017/9781009057745
https://doi.org/10.1017/9781009057745
https://mathscinet.ams.org/mathscinet-getitem?mr=4400295
https://doi.org/10.1111/jtsa.12614
https://mathscinet.ams.org/mathscinet-getitem?mr=3488020
https://doi.org/10.1002/asmb.2147
https://doi.org/10.1002/asmb.2147
https://mathscinet.ams.org/mathscinet-getitem?mr=3706696
https://doi.org/10.1016/j.spl.2017.08.007
https://mathscinet.ams.org/mathscinet-getitem?mr=0797411
https://doi.org/10.1515/9783110844641
https://mathscinet.ams.org/mathscinet-getitem?mr=2609939
https://doi.org/10.1016/j.jeconom.2009.11.006
https://mathscinet.ams.org/mathscinet-getitem?mr=0436905
https://doi.org/10.1016/0304-4076(75)90032-9
https://mathscinet.ams.org/mathscinet-getitem?mr=2988457
https://doi.org/10.1214/12-EJS721
https://mathscinet.ams.org/mathscinet-getitem?mr=2160816
https://doi.org/10.1198/106186005X48687
https://mathscinet.ams.org/mathscinet-getitem?mr=0534841
https://doi.org/10.1007/BF01886869
https://mathscinet.ams.org/mathscinet-getitem?mr=1779149
https://doi.org/10.1111/1468-0262.00157
https://doi.org/10.1111/1468-0262.00157
https://mathscinet.ams.org/mathscinet-getitem?mr=1611693
https://doi.org/10.1002/(sici)1098-2418(199608/09)9:1/2&lt;223::aid-rsa14&gt;3.0.co;2-o
https://doi.org/10.1002/(sici)1098-2418(199608/09)9:1/2&lt;223::aid-rsa14&gt;3.0.co;2-o
https://mathscinet.ams.org/mathscinet-getitem?mr=3561100
https://doi.org/10.1007/978-3-319-45575-4
https://mathscinet.ams.org/mathscinet-getitem?mr=0346881
https://doi.org/10.1214/aop/1176997031
https://mathscinet.ams.org/mathscinet-getitem?mr=2970917
https://doi.org/10.1080/10618600.2012.679239
https://doi.org/10.1080/10618600.2012.679239
https://mathscinet.ams.org/mathscinet-getitem?mr=4140544
https://doi.org/10.3150/20-BEJ1225


Theory and inference for multivariate autoregressive binary models 903

Truquet, L. (2023). Strong mixing properties of discrete-valued time series with exogenous covariates. Stochastic
Process. Appl. 160 294–317. MR4567527 https://doi.org/10.1016/j.spa.2023.03.006

Tuzcuoglu, K. (2023). Composite likelihood estimation of an autoregressive panel ordered probit model with random
effects. J. Bus. Econom. Statist. 41 593–607. MR4568045 https://doi.org/10.1080/07350015.2022.2044829

Wilkinson, D.P., Golding, N., Guillera-Arroita, G., Tingley, R. and McCarthy, M.A. (2019). A comparison of joint
species distribution models for presence–absence data. Methods Ecol. Evol. 10 198–211.

Young, G., Valdez, E.A. and Kohn, R. (2009). Multivariate probit models for conditional claim-types. Insurance
Math. Econom. 44 214–228. MR2517886 https://doi.org/10.1016/j.insmatheco.2008.11.004

Zhao, Y. and Joe, H. (2005). Composite likelihood estimation in multivariate data analysis. Canad. J. Statist. 33
335–356. MR2193979 https://doi.org/10.1002/cjs.5540330303

https://mathscinet.ams.org/mathscinet-getitem?mr=4567527
https://doi.org/10.1016/j.spa.2023.03.006
https://mathscinet.ams.org/mathscinet-getitem?mr=4568045
https://doi.org/10.1080/07350015.2022.2044829
https://mathscinet.ams.org/mathscinet-getitem?mr=2517886
https://doi.org/10.1016/j.insmatheco.2008.11.004
https://mathscinet.ams.org/mathscinet-getitem?mr=2193979
https://doi.org/10.1002/cjs.5540330303


Bernoulli 32(2), 2026, 926–951
https://doi.org/10.3150/25-BEJ1886

Volatility and jump activity estimation in a
stable Cox-Ingersoll-Ross model
ELISE BAYR AKTARa and EMMANUELLE CLÉMENTb

LAMA UMR8050, Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, F-77447 Marne-la-Vallée, France,
aelise.bayraktar@univ-eiffel.fr, bemmanuelle.clement@univ-eiffel.fr

We consider the parametric estimation of the volatility and jump activity in a stable Cox-Ingersoll-Ross (𝛼-stable
CIR) model driven by a standard Brownian Motion and a non-symmetric stable Lévy process with jump activity
𝛼 ∈ (1, 2). The main difficulties to obtain rate efficiency in estimating these quantities arise from the superposition
of the diffusion component with jumps of infinite variation. Extending the approach proposed in Mies (Electron. J.
Stat. 14 (2020) 4165–4206), we address the joint estimation of the volatility, scaling and jump activity parameters
from high-frequency observations of the process and prove that the proposed estimators are rate optimal up to a
logarithmic factor.

Keywords: Cox-Ingersoll-Ross model; Lévy process; parametric inference; stable process; stochastic differential
equation
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Consider the nonparametric logistic regression problem. In the logistic regression, we usually consider the maximum
likelihood estimator, and the excess risk is the expectation of the Kullback-Leibler (KL) divergence between the true
and estimated conditional class probabilities. However, in the nonparametric logistic regression, the KL divergence
could diverge easily, and thus, the convergence of the excess risk is difficult to prove or does not hold. Several
existing studies show the convergence of the KL divergence under strong assumptions. In most cases, our goal
is to estimate the true conditional class probabilities. Thus, instead of analyzing the excess risk itself, it suffices
to show the consistency of the maximum likelihood estimator in some suitable metric. In this paper, using a
simple unified approach for analyzing the nonparametric maximum likelihood estimator (NPMLE), we directly
derive convergence rates of the NPMLE in the Hellinger distance under mild assumptions. Although our results
are similar to the results in some existing studies, we provide simple and more direct proofs for these results. As an
important application, we derive convergence rates of the NPMLE with fully connected deep neural networks and
show that the derived rate nearly achieves the minimax optimal rate.

Keywords: Classification; conditional probability estimation; deep neural networks; nonparametric estimation
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The aim of this paper is to show the existence and uniqueness for the solution to a stochastic differential equation
driven by fractional Brownian motion with Hurst parameter 𝐻 < 1/2, with a discontinuous diffusion coefficient.
The stochastic integral used in this paper is an extension of the Stratonovich integral introduced by León (Bernoulli
26 (2020) 2436–2462). In this way, we are able to complement previous results for SDEs driven by fBms with
𝐻 > 1/2.

Keywords: Derivative operator in the Malliavin calculus sense; discontinuous diffusion; extensions of the
divergence operator and the Stratonovich integral; fractional Brownian motion; fractional stochastic differential
equation
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We propose a novel approach to uniformity testing on the 𝑑-dimensional unit hypersphere 𝒮𝑑−1 based on maximal
projections. This approach gives a unifying view on the classical uniformity tests of Rayleigh and Bingham, and it
links to measures of multivariate skewness and kurtosis. We derive the limit distribution under the null hypothesis
of the newly proposed test statistics using limit theorems for Banach-space-valued stochastic processes and we
present strategies to simulate the limit processes by applying results on the theory of spherical harmonics. We
examine the behaviour of the test statistics under contiguous and fixed alternatives and show the consistency of the
testing procedure for some classes of alternatives. For the first time in uniformity testing on the hypersphere, we
derive local Bahadur efficiency statements. Finally, we evaluate the theoretical findings and empirical power of the
procedures in a broad competitive Monte Carlo simulation study.

Keywords: Bahadur efficiency; contiguous alternatives; directional data; maximal projections; uniformity tests
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This work studies nonparametric Bayesian estimation of the intensity function of an inhomogeneous Poisson
point process in the important case where the intensity depends on covariates, based on the observation of a
single realisation of the point pattern over a large area. It is shown how the presence of covariates allows to borrow
information from far away locations in the observation window, enabling consistent inference in the growing domain
asymptotics. In particular, optimal posterior contraction rates under both global and point-wise loss functions are
derived. The rates in global loss are obtained under conditions on the prior distribution resembling those in the
well established theory of Bayesian nonparametrics, combined with concentration inequalities for functionals of
stationary processes to control certain random covariate-dependent loss functions appearing in the analysis. The
local rates are derived with an ad-hoc study that builds on recent advances in the theory of Pólya tree priors,
extended to the present multivariate setting with a novel construction that makes use of the random geometry
induced by the covariates.

Keywords: Cox process; Gaussian priors; frequentist analysis of Bayesian procedures; mixture priors; Poisson
process; Pólya tree priors
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To date, most methods for simulating conditioned diffusions are limited to the Euclidean setting. The conditioned
process can be constructed using a change of measure known as Doob’s ℎ-transform. The specific type of condi-
tioning depends on a function ℎ which is typically unknown in closed form. To resolve this, we extend the notion of
guided processes to a manifold 𝑀 , where one replaces ℎ by a function based on the heat kernel on 𝑀 . We consider
the case of a Brownian motion with drift, constructed using the frame bundle of 𝑀 , conditioned to hit a point 𝑥𝑇
at time 𝑇 . We prove equivalence of the laws of the conditioned process and the guided process with a tractable
Radon-Nikodym derivative. Subsequently, we show how one can obtain guided processes on any manifold 𝑁 that is
diffeomorphic to 𝑀 without assuming knowledge of the heat kernel on 𝑁 . We illustrate our results with numerical
simulations of guided processes and Bayesian parameter estimation based on discrete-time observations. For this,
we consider both the torus and the Poincaré disk.

Keywords: Bridge simulation; Doob’s ℎ-transform; geometric statistics; guided processes; Poincaré disk;
Riemannian manifolds
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We introduce a class of probabilistic cellular automata that are capable of exhibiting rich dynamics such as
synchronization and ergodicity, and can be easily inferred from data. The system is a finite-state locally interacting
Markov chain on a circular graph. Each site’s subsequent state is random, with a distribution determined by its
neighborhood’s empirical distribution multiplied by a local transition matrix. We establish sufficient and necessary
conditions on the local transition matrix for synchronization and ergodicity. Also, we introduce novel least squares
estimators for inferring the local transition matrix from various types of data, which may consist of either multiple
trajectories, a long trajectory, or ensemble sequences without trajectory information. Under suitable identifiability
conditions, we show the asymptotic normality of these estimators and provide non-asymptotic bounds for their
accuracy.
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We study moderate deviations from hydrodynamic limits of a reaction diffusion model. The process is defined as
the superposition of the symmetric exclusion process with a Glauber dynamics. When the process starts from a
product measure with a constant density, which is a non-equilibrium measure for the process, we prove that the
re-scaled density fluctuation field satisfies the moderate deviation principle. Our proof relies on the so-called main
lemma developed in (Jara and Menezes (2018); Markov Process. Related Fields 26 (2020) 95–124).
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To investigate a dilemma of statistical and computational efficiency faced by long-run variance estimators, we
propose a decomposition of kernel weights in a quadratic form and some online inference principles. These proposals
allow us to characterize efficient online long-run variance estimators. Our asymptotic theory and simulations show
that this principle-driven approach leads to online estimators with a uniformly lower mean squared error than all
existing works. We also discuss practical enhancements such as mini-batch and automatic updates to handle fast
streaming data and optimal parameters tuning. Beyond variance estimation, we consider the proposals in the context
of online quantile regression, online change point detection, Markov chain Monte Carlo convergence diagnosis, and
stochastic approximation. Substantial improvements in computational cost and finite-sample statistical properties
are observed when we apply our principle-driven variance estimator to original and modified inference procedures.
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Diffusion processes as Wasserstein gradient
flows via stochastic control of the volatility
matrix
BERTR AM TSCHIDER ERa

Faculty of Mathematics, University of Vienna, Vienna, Austria, abertram.tschiderer@univie.ac.at

We study a class of time-homogeneous diffusion processes on R𝑛 that share a common invariant measure but
differ in their volatility matrices. In the Euclidean setting, we show that when the volatility matrix is the identity,
the time-marginal distributions evolve as an entropic gradient flow in the quadratic Wasserstein space. This result
recovers the gradient flow formulation of the Fokker–Planck equation, as established by Jordan, Kinderlehrer, and
Otto. When R𝑛 is equipped with a Riemannian metric, we prove that the diffusion process becomes a gradient
flow in the Wasserstein space induced by the metric. This characterization holds when the volatility matrix is the
inverse of the metric tensor. Our approach combines stochastic control of the diffusion coefficient and time-reversal
techniques. These findings align with results by Lisini, which build on the metric theory of Ambrosio, Gigli, and
Savaré, and connect to Fathi’s work on large deviations for diffusion processes via gradient flows.

Keywords: Diffusion process; gradient flow; relative entropy dissipation; Riemannian metric; stochastic control;
volatility matrix; Wasserstein distance
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Scaling limit for the cover time of the 𝜆-biased
random walk on a binary tree with 𝜆 < 1
DAVID A. CROYDONa

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan, acroydon@kurims.kyoto-u.ac.jp

The 𝜆-biased random walk on a binary tree of depth 𝑛 is the continuous-time Markov chain that has unit mean
holding times and, when at a vertex other than the root or a leaf of the tree in question, has a probability of jumping
to the parent vertex that is 𝜆 times the probability of jumping to a particular child. (From the root, it chooses one
of the two children with equal probability.) For this process, when 𝜆 < 1, we derive an 𝑛→∞ scaling limit for
the cover time, that is, the time taken to visit every vertex. The distributional limit is described in terms of a jump
process on a Cantor set that can be seen as the asymptotic boundary of the tree. This conclusion complements
previous results obtained when 𝜆 ≥ 1.

Keywords: Binary tree; Cantor set; cover time; jump process; random walk
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Stein’s method of moments on the sphere
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We use Stein characterizations to obtain new moment-type estimators for the parameters of three classical spherical
distributions (namely the Fisher-Bingham, the von Mises-Fisher, and the Watson distributions) in the i.i.d. case.
This leads to explicit estimators which have good asymptotic properties (close to efficiency) and therefore provide
interesting alternatives to classical maximum likelihood methods or more recent score matching estimators. We
perform competitive simulation studies to assess the quality of the new estimators. Finally, the practical relevance
of our estimators is illustrated on a real data application in spherical latent representations of handwritten numbers.

Keywords: Autoencoder; Fisher-Bingham distribution; point estimation; spherical distributions; Stein’s method
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The contribution of this work is twofold. The first part deals with a Hilbert-space version of McCann’s celebrated
result on the existence and uniqueness of monotone measure-preserving maps: given two probability measures P
and Q on a separable Hilbert space ℋ where P does not give mass to “small” sets (namely, Lipschitz hypersurfaces),
we show, without imposing any moment assumptions, that there exists a gradient of convex function ∇𝜓 pushing P
forward to Q. In case ℋ is infinite-dimensional, P-a.e. uniqueness is not guaranteed, though; we show that
uniqueness holds among all gradients of convex functions ∇𝜓 pushing P forward to Q for which the boundary of
the domain of 𝜓 has P-probability zero. This condition (hence the uniqueness of the gradient of convex function ∇𝜓
pushing P forward to Q) is automatically satisfied in the finite-dimensional case or when Q is boundedly supported
(a natural assumption in several statistical applications). Furthermore, we establish stability results for transport
maps in the sense of uniform convergence over compact “regularity sets.” As a consequence, we obtain a central
limit theorem for the fluctuations of the optimal quadratic transport cost in a separable Hilbert space. In the second
part of the paper we consider several important statistical applications of our results—center-outward ranks and
quantiles for Hilbert-space-valued data, nonparametric distribution-free testing, and the construction of quantile
regions. We show that the measure-transportation-based ranks are distribution-free and maximal ancillary, while
the corresponding quantile functions fully characterize the underlying probability measures. These are the first
notions of ranks and quantiles in non-locally compact spaces satisfying these properties.

Keywords: Central limit theorem; Lipschitz hypersurfaces; McCann’s theorem; measure transportation;
nonparametric distribution-free testing; quantiles for functional data; stability and uniqueness of transport maps;
Wasserstein distance
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Detecting spectral breaks in spiked covariance
models
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In this paper, the key objects of interest are the sequential covariance matrices S𝑛,𝑡 and their largest eigenvalues.
Here, the matrix S𝑛,𝑡 is computed as the empirical covariance associated with observations {x1, . . . , x⌊𝑛𝑡 ⌋ }, for 𝑡 ∈
[0, 1]. The observations x1, . . . ,x𝑛 are assumed to be i.i.d. 𝑝-dimensional vectors with zero mean, and a covariance
matrix that is a fixed-rank perturbation of the identity matrix. Treating {S𝑛,𝑡 }𝑡∈[0,1] as a matrix-valued stochastic
process indexed by 𝑡, we study the behavior of the largest eigenvalues of S𝑛,𝑡 , as 𝑡 varies, with 𝑛 and 𝑝 increasing
simultaneously, so that 𝑝/𝑛→ 𝑦 ∈ (0, 1). As a key contribution of this work, we establish the weak convergence of
the stochastic process corresponding to the sample spiked eigenvalues, if their population counterparts exceed the
critical phase-transition threshold. Our analysis of the limiting process is fully comprehensive revealing, in general,
non-Gaussian limiting processes. As an application, we consider a class of change-point problems, where the interest
is in detecting structural breaks in the covariance caused by a change in magnitude of the spiked eigenvalues. For this
purpose, we propose two different maximal statistics corresponding to centered spiked eigenvalues of the sequential
covariances. We show the existence of limiting null distributions for these statistics, and prove consistency of the
test under fixed alternatives. Moreover, we compare the behavior of the proposed tests through a simulation study.

Keywords: Change-point problems; high-dimensional statistics; hypothesis testing; spiked covariance model

References

Aue, A. and Horvath, L. (2013). Structural breaks in time series. J. Time Series Anal. 34 1–16.
Aue, A., Hörmann, S., Horváth, L. and Reimherr, M. (2009). Break detection in the covariance structure of

multivariate time series models. Ann. Statist. 37 4046–4087.
Bai, Z. and Silverstein, J.W. (2010). Spectral Analysis of Large Dimensional Random Matrices 20. Springer.
Bai, Z. and Yao, J. (2008). Central limit theorems for eigenvalues in a spiked population model. Ann. Inst. Henri

Poincaré Probab. Stat. 44 447–474.
Bai, Z. and Yao, J. (2012). On sample eigenvalues in a generalized spiked population model. J. Multivariate Anal.

106 167–177.
Bai, Z.-D. and Yin, Y.-Q. (2008). Limit of the smallest eigenvalue of a large dimensional sample covariance matrix.

In In Advances in Statistics 108–127. World Sci. Publ.
Baik, J., Ben Arous, G. and Péché, S. (2005). Phase transition of the largest eigenvalue for nonnull complex sample

covariance matrices. Ann. Probab. 33 1643–1697.
Baik, J. and Silverstein, J.W. (2006). Eigenvalues of large sample covariance matrices of spiked population models.

J. Multivariate Anal. 97 1382–1408.
Bao, Z., Pan, G. and Zhou, W. (2015). Universality for the largest eigenvalue of sample covariance matrices with

general population. Ann. Statist. 43 382–421.
Bao, Z., Ding, X., Wang, J. and Wang, K. (2022). Statistical inference for principal components of spiked covariance

matrices. Ann. Statist. 50 1144–1169.
Beisson, R., Vallet, P., Giremus, A. and Ginolhac, G. (2024). A new statistic for testing covariance equality in

high-dimensional Gaussian low-rank models. IEEE Trans. Signal Process.

1350-7265 © 2026 ISI/BS

https://www.bernoullisociety.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/25-BEJ1900
mailto:ndoernemann@math.au.dk
mailto:debpaul@ucdavis.edu


1244 N. Dörnemann and D. Paul

Billingsley, P. (1968). Convergence of Probability Measures, second ed. Wiley Series in Probability and Statistics:
Probability and Statistics. New York: John Wiley & Sons Inc.

Cai, T.T., Han, X. and Pan, G. (2020). Limiting laws for divergent spiked eigenvalues and largest nonspiked
eigenvalue of sample covariance matrices. Ann. Statist. 48 1255–1280.

Chen, L., Wang, W. and Wu, W.B. (2022). Inference of breakpoints in high-dimensional time series. J. Amer.
Statist. Assoc. 117 1951–1963.

Dette, H. and Gösmann, J. (2020). A likelihood ratio approach to sequential change point detection for a general
class of parameters. J. Amer. Statist. Assoc. 115 1361–1377.

Dette, H., Pan, G. and Yang, Q. (2022). Estimating a change point in a sequence of very high-dimensional covariance
matrices. J. Amer. Statist. Assoc. 117 444–454.

Dette, H. and Wied, D. (2016). Detecting relevant changes in time series models. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 78 371–394.

Ding, X. and Yang, F. (2018). A necessary and sufficient condition for edge universality at the largest singular
values of covariance matrices. Ann. Appl. Probab. 28 1679–1738.

Dörnemann, N. and Dette, H. (2024a). Linear spectral statistics of sequential sample covariance matrices. Ann.
Inst. Henri Poincaré Probab. Stat. 60 946–970.

Dörnemann, N. and Dette, H. (2024b). Detecting Change Points of Covariance Matrices in High Dimensions. arXiv
preprint, arXiv:2409.15588.

Dörnemann, N. and Paul, D. (2026). Supplement to “Detecting spectral breaks in spiked covariance models.”
https://doi.org/10.3150/25-BEJ1900SUPP

El Karoui, N. (2007). Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance
matrices. Ann. Probab. 35 663–714.

Fabozzi, F.J., Kolm, P.N., Pachamanova, D.A. and Focardi, S.M. (2007). Robust Portfolio Optimization and
Management. John Wiley & Sons.

Feng, G.-C., Yuen, P.C. and Dai, D.-Q. (2000). Human face recognition using PCA on wavelet subband. J. Electron.
Imaging 9 226–233.

Galeano, P. and Peña, D. (2007). Covariance changes detection in multivariate time series. J. Statist. Plann. Inference
137 194–211.

Horvath, L. and Rice, G. (2019). Asymptotics for empirical eigenvalue processes in high-dimensional linear factor
models. J. Multivariate Anal. 169 138–165.

Jiang, D. and Bai, Z. (2021a). Generalized four moment theorem and an application to CLT for spiked eigenvalues
of high-dimensional covariance matrices. Bernoulli 27 274–294.

Jiang, D. and Bai, Z. (2021b). Partial generalized four moment theorem revisited. Bernoulli 27 2337–2352.
Jirak, M. (2015). Uniform change point tests in high dimension. Ann. Statist. 43 2451–2483.
Johnstone, I.M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist.

29 295–327.
Johnstone, I.M. and Paul, D. (2018). PCA in high dimensions: An orientation. Proc. IEEE 108 1277–1292.
Kao, C., Trapani, L. and Urga, G. (2018). Testing for instability in covariance structures. Bernoulli 24 740–771.
Ke, Z.T., Ma, Y. and Lin, X. (2023). Estimation of the number of spiked eigenvalues in a covariance matrix by bulk

eigenvalue matching analysis. J. Amer. Statist. Assoc. 118 374–392.
Knowles, A. and Yin, J. (2017). Anisotropic local laws for random matrices. Probab. Theory Related Fields 169

257–352.
Lee, J.O. and Schnelli, K. (2016). Tracy-Widom distribution for the largest eigenvalue of real sample covariance

matrices with general population. Ann. Appl. Probab. 26 3786–3839.
Li, Z., Han, F. and Yao, J. (2020). Asymptotic joint distribution of extreme eigenvalues and trace of large sample

covariance matrix in a generalized spiked population model. Ann. Statist. 48 3138–3160.
Lorenz, E.N. (1956). Empirical Orthogonal Functions and Statistical Weather Prediction 1. Massachusetts Institute

of Technology. Department of Meteorology Cambridge.
Onatski, A. (2008). The Tracy-Widom limit for the largest eigenvalues of singular complex Wishart matrices. Ann.

Appl. Probab. 18 470–490.
Onatski, A. (2009). Testing hypotheses about the number of factors in large factor models. Econometrica 77

1447–1479.

https://arxiv.org/abs/2409.15588
https://doi.org/10.3150/25-BEJ1900SUPP


Spectral breaks in spiked covariance models 1245

Passemier, D., Li, Z. and Yao, J. (2017). On estimation of the noise variance in high dimensional probabilistic
principal component analysis. J. R. Stat. Soc. Ser. B. Stat. Methodol. 51–67.

Passemier, D. and Yao, J. (2014). Estimation of the number of spikes, possibly equal, in the high-dimensional case.
J. Multivariate Anal. 127 173–183.

Paul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist.
Sinica 17 1617–1642.

Paul, D. and Aue, A. (2014). Random matrix theory in statistics: A review. J. Statist. Plann. Inference 150 1–29.
Ruppert, D. and Matteson, D.S. (2011). Statistics and Data Analysis for Financial Engineering 13. Springer.
Ryan, S. and Killick, R. (2023). Detecting changes in covariance via random matrix theory. Technometrics 65

480–491.
Schnelli, K. and Xu, Y. (2023). Convergence rate to the Tracy-Widom laws for the largest eigenvalue of sample

covariance matrices. Ann. Appl. Probab. 33 677–725.
Tao, T. (2012). Topics in Random Matrix Theory 132. Am. Math. Soc.
Van Der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence. Springer.
Wang, Q., Su, Z. and Yao, J. (2014). Joint CLT for several random sesquilinear forms with applications to large-

dimensional spiked population models. Electron. J. Probab. 19 1–28.
Wang, D., Yu, Y. and Rinaldo, A. (2021). Optimal covariance change point localization in high dimensions.

Bernoulli 27 554–574.
Wang, R., Zhu, C., Volgushev, S. and Shao, X. (2022). Inference for change points in high-dimensional data via

selfnormalization. Ann. Statist. 50 781–806.
Yao, J., Zheng, S. and Bai, Z. (2015). Large Sample Covariance Matrices and High-Dimensional Data Analysis.

Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press.
Zhang, Y., Wang, R. and Shao, X. (2022). Adaptive inference for change points in high-dimensional data. J. Amer.

Statist. Assoc. 117 1751–1762.
Zhang, Z., Zheng, S., Pan, G. and Zhong, P.-S. (2022). Asymptotic independence of spiked eigenvalues and linear

spectral statistics for large sample covariance matrices. Ann. Statist. 50 2205–2230.
Zheng, S. (2012). Central limit theorems for linear spectral statistics of large dimensional 𝐹-matrices. Ann. Inst.

Henri Poincaré Probab. Stat. 48 444–476.



Bernoulli 32(2), 2026, 1267–1284
https://doi.org/10.3150/25-BEJ1901

Bernstein-type inequalities for Markov chains
and Markov processes: A simple and robust
proof
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We establish a new Bernstein-type deviation inequality for general (non-reversible) discrete-time Markov chains
via an elementary approach. More robust than existing works in the literature, our result only requires the Markov
chain to satisfy an iterated Poincaré inequality. Moreover, our method can be readily generalized to continuous-time
Markov processes.
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Empirical Bayes large-scale multiple testing for
high-dimensional binary outcome data
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This paper explores the multiple testing problem for sparse high-dimensional data with binary outcomes. We
propose novel empirical Bayes multiple testing procedures based on a spike-and-slab posterior and then evaluate
their performance in controlling the false discovery rate (FDR). A surprising finding is that the procedure using
the default conjugate prior (namely, the ℓ-value procedure) can be overly conservative in estimating the FDR. To
address this, we introduce two new procedures that provide accurate FDR control. Sharp frequentist theoretical
results are established for these procedures, and numerical experiments are conducted to validate our theory in
finite samples. To the best of our knowledge, we obtain the first uniform FDR control result in multiple testing for
high-dimensional data with binary outcomes under the sparsity assumption.

Keywords: Binomial distribution; empirical Bayes; false discovery rate; multiple testing; sparse binary data;
spike-and-slab posterior
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semiparametric methods
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While variable selection has received extensive attention in the literature, its exploration in the presence of response
measurement error remains underexplored. In this paper, we investigate this important problem within the context
of binary classification with error-prone responses. We present valid variable selection procedures to address the
complexities of response errors. Leveraging validation data, we introduce both parametric and semiparametric
methodologies to accommodate the mismeasurement effects. By rigorously establishing theoretical results, we
offer insights and justifications of the validity of the proposed methods. By properly choosing the penalty function
and regularization parameter, we demonstrate that the resulting estimators possess the oracle property. To assess
the finite sample properties of the proposed methods, we conduct numerical studies that confirm the effectiveness
of our proposed methods.

Keywords: Errors in response; generalized linear models; logistic regression; measurement error; parametric
method; penalty function; semiparametric method; variable selection
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It is well known that under some conditions the almost sure survival probability of a multitype branching process
in random environment is positive if the Lyapunov exponent corresponding to the expectation matrices is positive,
and zero if the Lyapunov exponent is negative. The goal of this note is to establish similar results when certain
positivity conditions on the expectation matrices are not met. One application of such a result is to classify the
positivity of Lebesgue measure of certain overlapping random self-similar sets.

Keywords: Multitype branching process in random environment; random fractals

References
Athreya, K.B. and Karlin, S. (1971). On branching processes with random environments: I: Extinction probabilities.

Ann. Math. Statist. 42 1499–1520. https://doi.org/10.1214/aoms/1177693150
Bárány, B., Simon, K. and Solomyak, B. (2023). Self-Similar and Self-Affine Sets and Measures. Math. Surv.

Monogr. Providence, RI: American Mathematical Society (AMS).
Dekking, F.M. and Grimmet, G.R. (1988). Superbranching processes and projections of random Cantor sets.

Probab. Theory Related Fields 78 335–355. https://doi.org/10.1007/BF00334199
Dekking, F.M. and Meester, R.W.J. (1990). On the structure of Mandelbrot’s percolation process and other random

Cantor sets. J. Stat. Phys. 58 1109–1126. https://doi.org/10.1007/BF01026566
Dekking, F.M. and Simon, K. (2008). On the size of the algebraic difference of two random Cantor sets. Random

Structures Algorithms 32 205–222. https://doi.org/10.1002/rsa.20178
Falconer, K.J. (1989). Projections of random Cantor sets. J. Theoret. Probab. 2 65–70. https://doi.org/10.1007/

BF01048269
Falconer, K.J. and Grimmett, G.R. (1992). On the geometry of random Cantor sets and fractal percolation. J.

Theoret. Probab. 5 465–485. https://doi.org/10.1007/BF01060430
Hennion, H. (1997). Limit theorems for products of positive random matrices. Ann. Probab. 25 1545–1587. https://

doi.org/10.1214/aop/1023481103
Karlin, S. and Taylor, H.M. (1975). A First Course in Stochastic Processes.
Kersting, G. and Vatutin, V. (2017) In Discrete Time Branching Processes in Random Environment. Math. Stat.

Ser. Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9781119452898
Móra, P., Simon, K. and Solomyak, B. (2009). The Lebesgue measure of the algebraic difference of two random

Cantor sets. Indag. Math. 20 131–149. https://doi.org/10.1016/S0019-3577(09)80007-4
Orgoványi, V. and Simon, K. (2023). Projections of the random Menger sponge. Asian J. Math. 27 893–936. https://

doi.org/10.4310/AJM.2023.v27.n6.a4
Orgoványi, V. and Simon, K. (2024). Interior points and Lebesgue measure of overlapping Mandelbrot percolation

sets. Preprint.

1350-7265 © 2026 ISI/BS

https://www.bernoullisociety.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/25-BEJ1908
mailto:orgovanyi.vilma@gmail.com
mailto:karoly.simon51@gmail.com
https://doi.org/10.1214/aoms/1177693150
https://doi.org/10.1007/BF00334199
https://doi.org/10.1007/BF01026566
https://doi.org/10.1002/rsa.20178
https://doi.org/10.1007/BF01048269
https://doi.org/10.1007/BF01048269
https://doi.org/10.1007/BF01060430
https://doi.org/10.1214/aop/1023481103
https://doi.org/10.1214/aop/1023481103
https://doi.org/10.1002/9781119452898
https://doi.org/10.1016/S0019-3577(09)80007-4
https://doi.org/10.4310/AJM.2023.v27.n6.a4
https://doi.org/10.4310/AJM.2023.v27.n6.a4


Multitype branching process in random environments 1329

Pollicott, M. (2023). In Lectures on Equilibrium states, mixing and dimension. Lecture Notes from Banach. Center,
Warsaw.

Tanny, D. (1981). On multitype branching processes in a random environment. Adv. Appl. Probab. 13 464–497.
https://doi.org/10.2307/1426781

Vatutin, V.A. and Dyakonova, E.E. (2021). Multitype branching processes in random environment. Russian Math.
Surveys 76 1019–1063. https://doi.org/10.1070/RM10012

Walters, P. (2000). An Introduction to Ergodic Theory. Graduate Texts in Mathematics. New York: Springer.
Weissner, E.W. (1971). Multitype branching processes in random environments. J. Appl. Probab. 8 17–31. https://

doi.org/10.2307/3211834

https://doi.org/10.2307/1426781
https://doi.org/10.1070/RM10012
https://doi.org/10.2307/3211834
https://doi.org/10.2307/3211834


Bernoulli 32(2), 2026, 1356–1382
https://doi.org/10.3150/25-BEJ1909

Causal inference on process graphs:
Causal structure and effect identification
NICOLAS-DOMENIC R EITER1,a , JONAS WAHL2,b, ANDR EAS GERHAR DUS3,c

and JAKOB RUNGE4,d

1TUM School of Computation, Information and Technology, Technical University of Munich, Munich, Germany,
anicolas-domenic.reiter@tum.de
2Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Saarbrücken, Germany, bjonas.wahl@dfki.de
3German Aerospace Center (DLR), Institute of Data Science, Jena, Germany, candreas.gerhardus@dlr.de
4Department of Computer Science, University of Potsdam, Potsdam, Germany, djakob.runge@uni-potsdam.de

A structural vector autoregressive (SVAR) process is a linear causal model for variables that evolve over a discrete
set of time points and between which there may be lagged and instantaneous effects. The qualitative causal structure
of an SVAR process can be represented by its finite and directed process graph, where a directed link connects two
processes whenever there is a lagged or instantaneous effect between them. At the process graph level, the causal
structure of SVAR processes is compactly parameterized in the frequency domain. In this paper, we consider the
problem of causal discovery and causal effect estimation from the spectral density, the frequency domain analogue
of the autocovariance, of the SVAR process. Causal discovery concerns the recovery of the process graph. Causal
effect estimation concerns the identification and estimation of frequency domain causal effects. We show that
information about the process graph, in terms of 𝑑- and 𝑡-separation, is generically characterized by algebraic
constraints on the spectral density. Furthermore, we introduce a notion of rational identifiability for frequency
domain causal effects between processes that may be confounded by exogenous latent processes, and show that
the recent graphical latent factor half-trek criterion can be used on the process graph to assess whether a given
(confounded) effect can be identified by rational operations on the entries of the spectral density.

Keywords: Causal inference; graphical models; identifiability; spectral density; SVAR processes
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We consider testing the goodness-of-fit of a distribution against alternatives separated in sup norm. We study the
twin settings of Poisson-generated count data with a large number of categories and high-dimensional multinomials.
In previous studies of different separation metrics, it has been found that the local minimax separation rate exhibits
substantial heterogeneity and is a complicated function of the null distribution; the rate-optimal test requires careful
tailoring to the null. In the setting of sup norm, this remains the case and we establish that the local minimax
separation rate is determined by the finer decay behavior of the category rates. The upper bound is obtained by a
test involving the sample maximum, and the lower bound argument involves reducing the original heteroskedastic
null to an auxiliary homoskedastic null determined by the decay of the rates. Further, in a particular asymptotic
setup, the sharp constants are identified.

Keywords: Goodness-of-fit tests; multinomial data; Poisson distribution; sharp constant; sup norm
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Convergence analysis of Markov chain Monte Carlo methods in high-dimensional statistical applications is increas-
ingly recognized. In this paper, we develop general mixing time bounds for Metropolis-Hastings algorithms on
discrete spaces by building upon and refining some recent theoretical advancements in Bayesian model selection
problems. We establish sufficient conditions for a class of informed Metropolis-Hastings algorithms to attain relax-
ation times that are independent of the problem dimension. These conditions are grounded in the high-dimensional
statistical theory and allow for possibly multimodal posterior distributions. We obtain our results through two
independent techniques: the multicommodity flow method and single-element drift condition analysis; we find
that the latter yields a slightly tighter mixing time bound. Our results are readily applicable to a broad spectrum
of statistical problems with discrete parameter spaces, as we demonstrate using both theoretical and numerical
examples.

Keywords: Drift condition; finite Markov chains; informed Metropolis-Hastings; mixing time; model selection;
multicommodity flow; random walk Metropolis-Hastings; restricted spectral gap
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In this paper, a general result on the long time 𝑇𝑉-𝕎ℓ1 type propagation of chaos (PoC), one type of the PoC
with regularization effect, is derived for mean field interacting particle system driven by Lévy noise, where 𝑇𝑉 is
the total variation distance and 𝕎ℓ1 is the 𝐿1-Wasserstein distance. By using the method of coupling, the general
result is applied to mean field interacting particle system driven by Brownian motion and 𝛼(𝛼 > 1)-stable noise
respectively, where the non-interacting drift is assumed to be dissipative in long distance.

Keywords: 𝛼-stable noise; McKean-Vlasov SDEs; mean field interacting particle system; quantitative PoC;
reflection coupling; total variation distance
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We study the problem of covariance change point localisation and inference for sequentially collected fragmented
functional data, where each curve is observed only over discrete grids randomly sampled over a short fragment.
The sequence of underlying covariance functions is assumed to be piecewise constant, with changes happening at
unknown time points. To localise the change points, we propose a computationally efficient fragmented functional
dynamic programming (FFDP) algorithm with consistent change point localisation rates. With an extra step of local
refinement, we derive the limiting distributions for the refined change point estimators in two different regimes
where the minimal jump size vanishes and where it remains constant as the sample size diverges. Such results
are the first time seen in the fragmented functional data literature. As a byproduct of independent interest, we
also present a non-asymptotic result on the estimation error of the covariance function estimators over intervals
with change points. Our result accounts for the effects of the sampling grid size within each fragment under novel
identifiability conditions. Extensive numerical studies are also provided to support our theoretical results.

Keywords: Change point analysis; covariance function estimation; fragmented functional data; inference
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This study focuses on statistical inference for compound models of the form 𝑋 = 𝜉1 + . . . + 𝜉𝑁 , where 𝑁 is a
random variable denoting the count of summands, which are independent and identically distributed (i.i.d.) random
variables 𝜉1, 𝜉2, . . .. The paper addresses the problem of reconstructing the distribution of 𝜉 from observed samples
of 𝑋’s distribution, a process referred to as decompounding, with the assumption that 𝑁’s distribution is known.
This work diverges from the conventional scope by not limiting 𝑁’s distribution to the Poisson type, thus embracing
a broader context. We propose a nonparametric estimate for the density of 𝜉, derive its rates of convergence and
prove that these rates are minimax optimal for suitable classes of distributions for 𝜉 and 𝑁 . Finally, we illustrate
the numerical performance of the algorithm on simulated examples.
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I prove a semiparametric Bernstein-von Mises theorem for a partially linear regression model with independent
priors for the low-dimensional parameter of interest and the infinite-dimensional nuisance parameters. My result
avoids a challenging prior invariance condition that arises from a loss of information associated with not knowing
the nuisance parameter. The key idea is to employ a feasible reparametrization of the partially linear regression
model that reflects the semiparametric structure of the model. This allows a researcher to assume independent
priors for the model parameters while automatically accounting for the loss of information associated with not
knowing the nuisance parameters. The theorem is verified for uniform wavelet series priors and Matérn Gaussian
process priors.
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Invertible processes are central to functional time series analysis, making the estimation of their defining operators
a key problem. While asymptotic error bounds have been established for specific ARMA models on 𝐿2 [0, 1],
a general theoretical framework has not yet been considered. This paper fills in this gap by deriving consistent
estimators for the operators characterizing the invertible representation of a functional time series with white noise
innovations in a general separable Hilbert space. Under mild conditions covering a broad class of functional time
series, we establish explicit asymptotic error bounds, with rates determined by operator smoothness and eigenvalue
decay. These results further provide consistency-rate estimates for operators in Hilbert space-valued causal linear
processes, including functional MA, AR, and ARMA models of arbitrary order.
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Optimal matching problem on the Boolean cube
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We establish upper and lower bounds for the expected Wasserstein-1 distance between the random empirical
measure and the uniform measure on the Boolean cube. Our analysis leverages techniques from Fourier analysis,
following the framework introduced in (Ann. Appl. Probab. 31 (2021) 2567–2584), as well as methods from large
deviations theory.
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We propose a new perspective to conduct robust functional data analysis of discretely observed functional data
ranging from sparse to dense sampling designs. This analysis caters to processes with various distributions,
including heavy-tailed, skewed, or contaminated distributions. We study the robust functional mean (M-location)
and introduce a robust dimension reduction method via principal component analysis. Theoretical outcomes for the
robust functional mean and eigenfunction estimates, derived from pooled discretely observed data, are elucidated,
matching their non-robust counterparts. The established convergence rates for these estimated eigenfunctions, with
indices increasing with sample size, pave the way for further modeling and analysis.
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We study a version of first passage percolation on ℤ
𝑑 where the random passage times on the edges are replaced

by contact times represented by random closed sets on ℝ. Similarly to the contact process without recovery, an
infection can spread into the system along increasing sequences of contact times. In case of stationary contact times,
we can identify associated first passage percolation models, which in turn establish shape theorems also for first
contact percolation. In case of periodic contact times that reflect some reoccurring daily pattern, we also present
shape theorems with limiting shapes that are universal with respect to the within-one-day contact distribution. In
this case, we also prove a Poisson approximation for increasing numbers of within-one-day contacts. Finally, we
present a comparison of the limiting speeds of three models – all calibrated to have one expected contact per day –
that suggests that less randomness is beneficial for the speed of the infection. The proofs rest on coupling and
subergodicity arguments.

Keywords: Contact process; first-passage percolation; pure-growth process; shape theorem
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In this paper, we investigate the asymptotic behaviors of the extreme eigenvectors in a general spiked covariance
matrix, where the dimension and sample size increase proportionally. We eliminate the restrictive assumption
of the block diagonal structure in the population covariance matrix. Moreover, there is no requirement for the
spiked eigenvalues and the 4th moment to be bounded. Specifically, we apply random matrix theory to derive
the convergence and limiting distributions of certain projections of the extreme eigenvectors in a large sample
covariance matrix within a generalized spiked population model. Furthermore, our techniques are robust and
effective, even when spiked eigenvalues differ significantly in magnitude from nonspiked ones. Finally, we propose
a powerful test for the eigenspaces of covariance matrices.

Keywords: Eigenvector; high-dimensional covariance matrix; random matrix theory; spiked model

References
[1] Bai, Z. (1999). Methodologies in spectral analysis of large dimensional random matrices, a review. Statist.

Sinica 9 611–662. MR1711663
[2] Bai, Z. and Ding, X. (2012). Estimation of spiked eigenvalues in spiked models. Random Matrices Theory

Appl. 1 1150011. MR2934717 https://doi.org/10.1142/S2010326311500110
[3] Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica 70

191–221. MR1926259 https://doi.org/10.1111/1468-0262.00273
[4] Bai, Z. and Silverstein, J.W. (2004). CLT for linear spectral statistics of large-dimensional sample covariance

matrices. Ann. Probab. 32 553–605. MR2040792 https://doi.org/10.1214/aop/1078415845
[5] Bai, Z. and Silverstein, J.W. (2010). Spectral Analysis of Large Dimensional Random Matrices, 2nd ed.

Springer Series in Statistics. New York: Springer. MR2567175 https://doi.org/10.1007/978-1-4419-0661-8
[6] Bai, Z. and Yao, J. (2008). Central limit theorems for eigenvalues in a spiked population model. Ann. Inst.

Henri Poincaré Probab. Stat. 44 447–474. MR2451053 https://doi.org/10.1214/07-AIHP118
[7] Bai, Z. and Yao, J. (2012). On sample eigenvalues in a generalized spiked population model. J. Multivariate

Anal. 106 167–177. MR2887686 https://doi.org/10.1016/j.jmva.2011.10.009
[8] Baik, J., Ben Arous, G. and Péché, S. (2005). Phase transition of the largest eigenvalue for nonnull

complex sample covariance matrices. Ann. Probab. 33 1643–1697. MR2165575 https://doi.org/10.1214/
009117905000000233

[9] Baik, J. and Silverstein, J.W. (2006). Eigenvalues of large sample covariance matrices of spiked population
models. J. Multivariate Anal. 97 1382–1408. MR2279680 https://doi.org/10.1016/j.jmva.2005.08.003

[10] Bao, Z., Ding, X. and Wang, K. (2021). Singular vector and singular subspace distribution for the matrix
denoising model. Ann. Statist. 49 370–392. MR4206682 https://doi.org/10.1214/20-AOS1960

[11] Bao, Z., Ding, X., Wang, J. and Wang, K. (2022). Statistical inference for principal components of spiked
covariance matrices. Ann. Statist. 50 1144–1169. MR4404931 https://doi.org/10.1214/21-AOS2143

1350-7265 © 2026 ISI/BS

https://www.bernoullisociety.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/25-BEJ1924
https://orcid.org/0009-0004-8075-5397
https://orcid.org/0009-0000-6333-7768
https://orcid.org/0000-0002-5300-5513
mailto:puzn687@nenu.edu.cn
mailto:zhangxz722@nenu.edu.cn
mailto:huj156@nenu.edu.cn
mailto:baizd@nenu.edu.cn
https://mathscinet.ams.org/mathscinet-getitem?mr=1711663
https://mathscinet.ams.org/mathscinet-getitem?mr=2934717
https://doi.org/10.1142/S2010326311500110
https://mathscinet.ams.org/mathscinet-getitem?mr=1926259
https://doi.org/10.1111/1468-0262.00273
https://mathscinet.ams.org/mathscinet-getitem?mr=2040792
https://doi.org/10.1214/aop/1078415845
https://mathscinet.ams.org/mathscinet-getitem?mr=2567175
https://doi.org/10.1007/978-1-4419-0661-8
https://mathscinet.ams.org/mathscinet-getitem?mr=2451053
https://doi.org/10.1214/07-AIHP118
https://mathscinet.ams.org/mathscinet-getitem?mr=2887686
https://doi.org/10.1016/j.jmva.2011.10.009
https://mathscinet.ams.org/mathscinet-getitem?mr=2165575
https://doi.org/10.1214/009117905000000233
https://doi.org/10.1214/009117905000000233
https://mathscinet.ams.org/mathscinet-getitem?mr=2279680
https://doi.org/10.1016/j.jmva.2005.08.003
https://mathscinet.ams.org/mathscinet-getitem?mr=4206682
https://doi.org/10.1214/20-AOS1960
https://mathscinet.ams.org/mathscinet-getitem?mr=4404931
https://doi.org/10.1214/21-AOS2143


Asymptotic properties of extreme eigenvectors 1621

[12] Benaych-Georges, F. and Nadakuditi, R.R. (2011). The eigenvalues and eigenvectors of finite, low rank
perturbations of large random matrices. Adv. Math. 227 494–521. MR2782201 https://doi.org/10.1016/j.aim.
2011.02.007

[13] Bianchi, P., Najim, J., Maida, M. and Debbah, M. (2009). Performance analysis of some eigen-based hypothesis
tests for collaborative sensing. In 2009 IEEE/SP 15th Workshop on Statistical Signal Processing 5–8. https://
doi.org/10.1109/SSP.2009.5278654

[14] Bloemendal, A., Knowles, A., Yau, H.-T. and Yin, J. (2014). On the principal components of sample covariance
matrices. Probab. Theory Related Fields 164 459–552. MR3449395 https://doi.org/10.1007/s00440-015-
0616-x

[15] Capitaine, M. and Donati-Martin, C. (2021). Non universality of fluctuations of outlier eigenvectors for block
diagonal deformations of Wigner matrices. ALEA Lat. Amer. J. Probab. Math. Stat. 18 129–165. MR4198872
https://doi.org/10.30757/ALEA.v18-07

[16] Capitaine, M., Donati-Martin, C. and Féral, D. (2009). The largest eigenvalues of finite rank deformation of
large Wigner matrices: Convergence and nonuniversality of the fluctuations. Ann. Probab. 37 1–47. https://
doi.org/10.1214/08-AOP394

[17] Couillet, R. and Debbah, M. (2011). Random Matrix Methods for Wireless Communications. Cambridge:
Cambridge University Press. MR2884783 https://doi.org/10.1017/CBO9780511994746

[18] Couillet, R. and Hachem, W. (2013). Fluctuations of spiked random matrix models and failure diagnosis
in sensor networks. IEEE Trans. Inf. Theory 59 509–525. MR3008163 https://doi.org/10.1109/TIT.2012.
2218572

[19] Ding, X. (2021). Spiked sample covariance matrices with possibly multiple bulk components. Random
Matrices Theory Appl. 10 2150014. https://doi.org/10.1142/S2010326321500143

[20] Ding, X. and Yang, F. (2018). A necessary and sufficient condition for edge universality at the largest singular
values of covariance matrices. Ann. Appl. Probab. 28 1679–1738. https://doi.org/10.1214/17-AAP1341

[21] Fan, J., Fan, Y., Han, X. and Lv, J. (2022). Asymptotic theory of eigenvectors for random matrices with
diverging spikes. J. Amer. Statist. Assoc. 117 996–1009. MR4436328 https://doi.org/10.1080/01621459.
2020.1840990

[22] Hoyle, D.C. and Rattray, M. (2004). Principal-component-analysis eigenvalue spectra from data with
symmetry-breaking structure. Phys. Rev. E 69 026124. https://doi.org/10.1103/PhysRevE.69.026124

[23] Hu, J. and Bai, Z. (2014). Strong representation of weak convergence. Sci. China Math. 57 2399–2406.
MR3266500 https://doi.org/10.1007/s11425-014-4855-6

[24] Jiang, D. and Bai, Z. (2021). Generalized four moment theorem and an application to CLT for spiked
eigenvalues of high-dimensional covariance matrices. Bernoulli 27 274–294. MR4177370 https://doi.org/10.
3150/20-BEJ1237

[25] Jiang, D. and Bai, Z. (2021). Partial generalized four moment theorem revisited. Bernoulli 27 2337–2352.
MR4303885 https://doi.org/10.3150/20-BEJ1310

[26] Johnstone, I.M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann.
Statist. 29 295–327. MR1863961 https://doi.org/10.1214/aos/1009210544

[27] Johnstone, I.M. and Yang, J. (2018). Notes on asymptotics of sample eigenstructure for spiked covariance
models with non-Gaussian data. arXiv:1810.10427.

[28] Knowles, A. and Yin, J. (2013). The isotropic semicircle law and deformation of Wigner matrices. Comm.
Pure Appl. Math. 66 1663–1749. MR3103909 https://doi.org/10.1002/cpa.21450

[29] Knowles, A. and Yin, J. (2014). The outliers of a deformed Wigner matrix. Ann. Probab. 42 1980–2031.
MR3262497 https://doi.org/10.1214/13-AOP855

[30] Marchenko, V.A. and Pastur, L.A. (1967). Distribution of eigenvalues for some sets of random matrices. Sb.
Math. 1 457–483. https://doi.org/10.1070/SM1967v001n04ABEH001994

[31] Mehta, M.L. (1991). Random Matrices. Academic Press.
[32] Morales-Jimenez, D., Johnstone, I.M., McKay, M.R. and Yang, J. (2021). Asymptotics of eigenstructure of

sample correlation matrices for high-dimensional spiked models. Statist. Sinica 31 571–601. MR4286186
https://doi.org/10.5705/ss.202019.0052

[33] Onatski, A. (2009). Testing hypotheses about the number of factors in large factor models. Econometrica 77
1447–1479. MR2561070 https://doi.org/10.3982/ECTA6964

https://mathscinet.ams.org/mathscinet-getitem?mr=2782201
https://doi.org/10.1016/j.aim.2011.02.007
https://doi.org/10.1016/j.aim.2011.02.007
https://doi.org/10.1109/SSP.2009.5278654
https://doi.org/10.1109/SSP.2009.5278654
https://mathscinet.ams.org/mathscinet-getitem?mr=3449395
https://doi.org/10.1007/s00440-015-0616-x
https://doi.org/10.1007/s00440-015-0616-x
https://mathscinet.ams.org/mathscinet-getitem?mr=4198872
https://doi.org/10.30757/ALEA.v18-07
https://doi.org/10.1214/08-AOP394
https://doi.org/10.1214/08-AOP394
https://mathscinet.ams.org/mathscinet-getitem?mr=2884783
https://doi.org/10.1017/CBO9780511994746
https://mathscinet.ams.org/mathscinet-getitem?mr=3008163
https://doi.org/10.1109/TIT.2012.2218572
https://doi.org/10.1109/TIT.2012.2218572
https://doi.org/10.1142/S2010326321500143
https://doi.org/10.1214/17-AAP1341
https://mathscinet.ams.org/mathscinet-getitem?mr=4436328
https://doi.org/10.1080/01621459.2020.1840990
https://doi.org/10.1080/01621459.2020.1840990
https://doi.org/10.1103/PhysRevE.69.026124
https://mathscinet.ams.org/mathscinet-getitem?mr=3266500
https://doi.org/10.1007/s11425-014-4855-6
https://mathscinet.ams.org/mathscinet-getitem?mr=4177370
https://doi.org/10.3150/20-BEJ1237
https://doi.org/10.3150/20-BEJ1237
https://mathscinet.ams.org/mathscinet-getitem?mr=4303885
https://doi.org/10.3150/20-BEJ1310
https://mathscinet.ams.org/mathscinet-getitem?mr=1863961
https://doi.org/10.1214/aos/1009210544
https://arxiv.org/abs/1810.10427
https://mathscinet.ams.org/mathscinet-getitem?mr=3103909
https://doi.org/10.1002/cpa.21450
https://mathscinet.ams.org/mathscinet-getitem?mr=3262497
https://doi.org/10.1214/13-AOP855
https://doi.org/10.1070/SM1967v001n04ABEH001994
https://mathscinet.ams.org/mathscinet-getitem?mr=4286186
https://doi.org/10.5705/ss.202019.0052
https://mathscinet.ams.org/mathscinet-getitem?mr=2561070
https://doi.org/10.3982/ECTA6964


1622 Pu, Zhang, Hu and Bai

[34] Paul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model.
Statist. Sinica 17 1617–1642. MR2399865

[35] Pu, Z., Zhang, X., Hu, J. and Bai, Z. (2026). Supplement to “The asymptotic properties of the extreme eigenvec-
tors of high-dimensional generalized spiked covariance models.” https://doi.org/10.3150/25-BEJ1924SUPP

[36] Silverstein, J.W. (1995). Strong convergence of the empirical distribution of eigenvalues of large dimensional
random matrices. J. Multivariate Anal. 55 331–339. https://doi.org/10.1006/jmva.1995.1083

[37] Skorokhod, A.V. (1956). Limit theorems for stochastic processes. Theory Probab. Appl. 1 261–290. https://
doi.org/10.1137/1101022

[38] Yao, J., Zheng, S. and Bai, Z. (2015). Large Sample Covariance Matrices and High-Dimensional Data
Analysis. Cambridge Series in Statistical and Probabilistic Mathematics 39. New York: Cambridge University
Press. MR3468554 https://doi.org/10.1017/CBO9781107588080

https://mathscinet.ams.org/mathscinet-getitem?mr=2399865
https://doi.org/10.3150/25-BEJ1924SUPP
https://doi.org/10.1006/jmva.1995.1083
https://doi.org/10.1137/1101022
https://doi.org/10.1137/1101022
https://mathscinet.ams.org/mathscinet-getitem?mr=3468554
https://doi.org/10.1017/CBO9781107588080


Bernoulli 32(2), 2026, 1645–1664
https://doi.org/10.3150/25-BEJ1925

Contraction rates and projection subspace
estimation with Gaussian process priors in
high dimension
ELIE ODIN1,a, FR ANÇOIS BACHOC1,2,4,b and AGNÈS LAGNOUX3,4,c

1Institut de Mathématiques de Toulouse; UMR5219. Université de Toulouse; CNRS. UT3, F-31062 Toulouse,
France, aelie.odin@math.univ-toulouse.fr
2Institut Universitaire de France (IUF), France, bfrancois.bachoc@math.univ-toulouse.fr
3Institut de Mathématiques de Toulouse; UMR5219. Université de Toulouse; CNRS. UT2J, F-31058 Toulouse,
France, clagnoux@univ-tlse2.fr
4Artificial and Natural Intelligence Toulouse Institute (ANITI), Toulouse, France

This work explores the dimension reduction problem for Bayesian nonparametric regression and density estimation.
More precisely, we are interested in estimating a functional parameter 𝑓 over the unit ball in ℝ

𝑑 , which depends
only on a 𝑑∗-dimensional subspace of ℝ𝑑 , with 𝑑∗ < 𝑑. It is well-known that rescaled Gaussian process priors
over a given function space achieve smoothness adaptation and posterior contraction with near minimax-optimal
rates. Furthermore, hierarchical extensions of this approach, equipped with subspace projection, can also adapt to
the intrinsic dimension 𝑑∗ (Tokdar (2011)). When the ambient dimension 𝑑 does not vary with 𝑛, the minimax
rate remains of the order 𝑛−𝛽/(2𝛽+𝑑∗ ) , where 𝛽 denotes the smoothness of 𝑓 . However, this is up to multiplicative
constants that can become prohibitively large as 𝑑 increases. The dependence between the contraction rate and the
ambient dimension has not been fully explored yet and this work provides a first insight: we let the dimensions 𝑑∗
and 𝑑 grow with 𝑛, and by combining the arguments of Tokdar (2011) and Castillo and Randrianarisoa (2024), we
derive growth rates for them that still lead to posterior consistency with minimax rate. We also discuss the optimality
of the growth rate for 𝑑. Additionally, we provide a set of assumptions under which a consistent estimation of 𝑓
leads to correct estimation of the subspace projection, assuming that 𝑑∗ is known.

Keywords: Bayesian nonparametrics; contraction rates; density estimation; Gaussian process prior; nonparametric
regression; reproducing kernel Hilbert space; sufficient dimension reduction
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Tame sparse exponential random graphs
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In this paper we obtain a precise estimate of the probability that the sparse binomial random graph contains a large
number of vertices in a triangle. We compute the logarithm of this probability up to second order, which enables us
to propose an exponential random graph model based on the number of vertices in a triangle. Specifically, by tuning
a single parameter, we can with high probability induce any given fraction of vertices in a triangle. Moreover, in
the proposed exponential random graph model we derive a large deviation principle for the number of edges. As a
byproduct, we propose a consistent estimator of the tuning parameter.

Keywords: Consistent estimation; exponential random graph; nonlinear large deviations; random graphs

References

Bhamidi, S., Bresler, G. and Sly, A. (2011). Mixing time of exponential random graphs. Ann. Appl. Probab. 21
2146–2170.

Bhamidi, S., Chakraborty, S., Cranmer, S. and Desmarais, B. (2018). Weighted exponential random graph models:
Scope and large network limits. J. Stat. Phys. 173 704–735.

Chakraborty, S., van der Hofstad, R. and den Hollander, F. (2021). Sparse random graphs with many triangles.
Preprint, arXiv:2112.06526 [math.PR].

Chatterjee, S. and Dembo, A. (2016). Nonlinear large deviations. Adv. Math. 299 396–450.
Chatterjee, S. and Diaconis, P. (2013). Estimating and understanding exponential random graph models. Ann.

Statist. 41 2428–2461.
Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, second ed. Applications of

Mathematics (New York) 38. New York: Springer-Verlag.
Frank, O. and Strauss, D. (1986). Markov graphs. J. Amer. Statist. Assoc. 81 832–842.
Häggström, O. and Jonasson, J. (1999). Phase transition in the random triangle model. J. Appl. Probab. 36

1101–1115.
Handcock, M.S. (2003). Assessing degeneracy in statistical models of social networks. J. Amer. Statist. Assoc. 76

33–50.
Harris, T.E. (1960). A lower bound for the critical probability in a certainvpercolation process. Proc. Camb. Philos.

Soc. 56 13–20.
Holland, P.W. and Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs. J.

Amer. Statist. Assoc. 76 33–50.
Hunter, D.R. and Handcock, M.S. (2006). Inference in curved exponential family models for networks. J. Comput.

Graph. Statist. 15 565–583.
Jonasson, J. (1999). The random triangle model. J. Appl. Probab. 36 852–867.
Mukherjee, S. (2020). Degeneracy in sparse ERGMs with functions of degrees as sufficient statistics. Bernoulli 26

1016–1043.
Newman, M.E. (2009). Random graphs with clustering. Phys. Rev. Lett. 103 058701.
Rapoport, A. (1948). Cycle distributions in random nets. Bull. Math. Biophys. 10 145–157.

1350-7265 © 2026 ISI/BS

https://www.bernoullisociety.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/25-BEJ1926
mailto:contact@sumanc.com
mailto:rhofstad@win.tue.nl
mailto:denholla@math.leidenuniv.nl
https://arxiv.org/abs/2112.06526


1666 S. Chakraborty, R. van der Hofstad and F. den Hollander

Serrano, M.Á. and Boguña, M. (2006). Clustering in complex networks. I. General formalism. Phys. Rev. E 74
056114.

Snijders, T.A., Pattison, P.E., Robins, G.L. and Handcock, M.S. (2006). New specifications for exponential random
graph models. Sociol. Method. 36 99–153.

Watts, D.J. and Strogatz, S.H. (1998). Collective dynamics of ‘small-world’ networks. Nature 393 440–442.


