Contents

A message from the editorial board ... 1

N. KANNAN and D. KUNDU
Simple step-stress models with a cure fraction .. 2

F.P. LIMA and F. CRIBARI-NETO
Bootstrap-based testing inference in beta regressions 18

W. ZHANG, J. WANG, F. QIAN and Y. CHEN
A joint mean-correlation modeling approach for longitudinal zero-inflated count data ... 35

F. B. GONÇALVES, M. O. PRATES and V. H. LACHOS
Robust Bayesian model selection for heavy-tailed linear regression using finite mixtures ... 51

D. BHATTACHARYA and S. BHATTACHARYA
Effects of gene–environment and gene–gene interactions in case-control studies: A novel Bayesian semiparametric approach .. 71

F. CASTELLARES, A. J. LEMONTE and M. A. C. SANTOS
On the Nielsen distribution .. 90

A. YOUNSO
Nonparametric discrimination of areal functional data 112

N. SHENKMAN
A primer on the characterization of the exchangeable Marshall–Olkin copula via monotone sequences ... 127

A. ANASTASIOU and R. E. GAUNT
Multivariate normal approximation of the maximum likelihood estimator via the delta method ... 136

A. HAIDARI, A. T. PAYANDEH NAJAFABADI and N. BALAKRISHNAN
Application of weighted and unordered majorization orders in comparisons of parallel systems with exponentiated generalized gamma components 150

M. ARSHAD and O. ABDALGHANI
On estimating the location parameter of the selected exponential population under the LINEX loss function .. 167

S. NADARAJAH and Y. SI
A note on the “L-logistic regression models: Prior sensitivity analysis, robustness to outliers and applications” .. 185

D. A. C. MOLLINEDO
$W^{1,p}$-Solutions of the transport equation by stochastic perturbation 188
A message from the editorial board
Simple step-stress models with a cure fraction

Nandini Kannana and Debasis Kundub

aNational Science Foundation
bIndian Institute of Technology Kanpur

Abstract. In this article, we consider models for time-to-event data obtained from experiments in which stress levels are altered at intermediate stages during the observation period. These experiments, known as step-stress tests, belong to the larger class of accelerated tests used extensively in the reliability literature. The analysis of data from step-stress tests largely relies on the popular cumulative exposure model. However, despite its simple form, the utility of the model is limited, as it is assumed that the hazard function of the underlying distribution is discontinuous at the points at which the stress levels are changed, which may not be very reasonable. Due to this deficiency, Kannan et al. (\textit{Journal of Applied Statistics} \textbf{37} (2010b) 1625–1636) introduced the cumulative risk model, where the hazard function is continuous. In this paper, we propose a class of parametric models based on the cumulative risk model assuming the underlying population contains long-term survivors or ‘cured’ fraction. An EM algorithm to compute the maximum likelihood estimators of the unknown parameters is proposed. This research is motivated by a study on altitude decompression sickness. The performance of different parametric models will be evaluated using data from this study.

References

\textit{Key words and phrases}. Cumulative exposure model, step-stress tests, cured fraction, maximum likelihood estimation, EM algorithm.

Bootstrap-based testing inference in beta regressions

Fábio P. Lima and Francisco Cribari-Neto
Universidade Federal de Pernambuco

Abstract. We address the issue of performing testing inference in small samples in the class of beta regression models. We consider the likelihood ratio test and its standard bootstrap version. We also consider two alternative resampling-based tests. One of them uses the bootstrap test statistic replicates to numerically estimate a Bartlett correction factor that can be applied to the likelihood ratio test statistic. By doing so, we avoid estimation of quantities located in the tail of the likelihood ratio test statistic null distribution. The second alternative resampling-based test uses a fast double bootstrap scheme in which a single second level bootstrapping resample is performed for each first level bootstrap replication. It delivers accurate testing inferences at a computational cost that is considerably smaller than that of a standard double bootstrapping scheme. The Monte Carlo results we provide show that the standard likelihood ratio test tends to be quite liberal in small samples. They also show that the bootstrap tests deliver accurate testing inferences even when the sample size is quite small. An empirical application is also presented and discussed.

References

Key words and phrases. Bartlett correction, beta regression, bootstrap, double bootstrap, fast double bootstrap, likelihood ratio test.
A joint mean-correlation modeling approach for longitudinal zero-inflated count data

Weiping Zhang, Jiangli Wang Fang Qian and Yu Chen
University of Science and Technology of China

Abstract. Longitudinal zero-inflated count data are widely encountered in many fields, while modeling the correlation between measurements for the same subject is more challenge due to the lack of suitable multivariate joint distributions. This paper studies a novel mean-correlation modeling approach for longitudinal zero-inflated regression model, solving both problems of specifying joint distribution and parsimoniously modeling correlations with no constraint. The joint distribution of zero-inflated discrete longitudinal responses is modeled by a copula model whose correlation parameters are innovatively represented in hyper-spherical coordinates. To overcome the computational intractability in maximizing the full likelihood function of the model, we further propose a computationally efficient pairwise likelihood approach. We then propose separated mean and correlation regression models to model these key quantities, such modeling approach can also handle irregularly and possibly subject-specific times points. The resulting estimators are shown to be consistent and asymptotically normal. Data example and simulations support the effectiveness of the proposed approach.

References

Key words and phrases. Copula, hyperspherical coordinates, mean-correlation regression, pairwise likelihood, zero inflated negative binomial.

Robust Bayesian model selection for heavy-tailed linear regression using finite mixtures

Flávio B. Gonçalvesa, Marcos O. Pratesa and Victor Hugo Lachosb

aUniversidade Federal de Minas Gerais
bUniversity of Connecticut

Abstract. In this paper, we present a novel methodology to perform Bayesian model selection in linear models with heavy-tailed distributions. We consider a finite mixture of distributions to model a latent variable where each component of the mixture corresponds to one possible model within the symmetrical class of normal independent distributions. Naturally, the Gaussian model is one of the possibilities. This allows for a simultaneous analysis based on the posterior probability of each model. Inference is performed via Markov chain Monte Carlo—a Gibbs sampler with Metropolis–Hastings steps for a class of parameters. Simulated examples highlight the advantages of this approach compared to a segregated analysis based on arbitrarily chosen model selection criteria. Examples with real data are presented and an extension to censored linear regression is introduced and discussed.

References

\textit{Key words and phrases.} Scale mixtures of normal, Student-t, slash, penalised complexity priors, MCMC.

Effects of gene–environment and gene–gene interactions in case-control studies: A novel Bayesian semiparametric approach

Durba Bhattacharya and Sourabh Bhattacharya
Indian Statistical Institute

Abstract. Present day bio-medical research is pointing towards the fact that cognizance of gene–environment interactions along with genetic interactions may help prevent or detain the onset of many complex diseases like cardiovascular disease, cancer, type2 diabetes, autism or asthma by adjustments to lifestyle.

In this regard, we propose a Bayesian semiparametric model to detect not only the roles of genes and their interactions, but also the possible influence of environmental variables on the genes in case-control studies. Our model also accounts for the unknown number of genetic sub-populations via finite mixtures composed of Dirichlet processes. An effective parallel computing methodology, developed by us harnesses the power of parallel processing technology to increase the efficiencies of our conditionally independent Gibbs sampling and Transformation based MCMC (TMCMC) methods.

Applications of our model and methods to simulation studies with biologically realistic genotype datasets and a real, case-control based genotype dataset on early onset of myocardial infarction (MI) have yielded quite interesting results beside providing some insights into the differential effect of gender on MI.

References

Key words and phrases. Case-control study, Dirichlet process, gene–gene and gene–environment interaction, matrix normal, parallel processing, transformation based MCMC.

On the Nielsen distribution

Fredy Castellaresa, Artur J. Lemonteb and Marcos A. C. Santosa

aDepartamento de Estatística, ICEX, Universidade Federal de Minas Gerais
bDepartamento de Estatística, CCET, Universidade Federal do Rio Grande do Norte

Abstract. We introduce a two-parameter discrete distribution that may have a zero vertex and can be useful for modeling overdispersion. The discrete Nielsen distribution generalizes the Fisher logarithmic (i.e., logarithmic series) and Stirling type I distributions in the sense that both can be considered displacements of the Nielsen distribution. We provide a comprehensive account of the structural properties of the new discrete distribution. We also show that the Nielsen distribution is infinitely divisible. We discuss maximum likelihood estimation of the model parameters and provide a simple method to find them numerically. The usefulness of the proposed distribution is illustrated by means of three real data sets to prove its versatility in practical applications.

References

\textit{Key words and phrases}. Discrete distribution, Fisher logarithmic distribution, Nielsen expansion, Stirling distributions.

Nonparametric discrimination of areal functional data

Ahmad Younso
Damascus University

Abstract. We consider a new nonparametric rule of classification, inspired from the classical moving window rule, that allows for the classification of spatially dependent functional data containing some completely missing curves. We investigate the consistency of this classifier under mild conditions. The practical use of the classifier will be illustrated through simulation studies.

References

A primer on the characterization of the exchangeable Marshall–Olkin copula via monotone sequences

Natalia Shenkman
Technische Universität München

Abstract. While derivations of the characterization of the d-variate exchangeable Marshall–Olkin copula via d-monotone sequences relying on basic knowledge in probability theory exist in the literature, they contain a myriad of unnecessary relatively complicated computations. We revisit this issue and provide proofs where all undesired artefacts are removed, thereby exposing the simplicity of the characterization. In particular, we give an insightful analytical derivation of the monotonicity conditions based on the monotonicity properties of the survival probabilities.

References

Key words and phrases. Marshall–Olkin distribution, lack of memory, exchangeability, d-monotone sequence.

Multivariate normal approximation of the maximum likelihood estimator via the delta method

Andreas Anastasioua and Robert E. Gauntb
\begin{itemize}
 \itemaThe London School of Economics and Political Science
 \itembSchool of Mathematics, The University of Manchester
\end{itemize}

\textbf{Abstract.} We use the delta method and Stein’s method to derive, under regularity conditions, explicit upper bounds for the distributional distance between the distribution of the maximum likelihood estimator (MLE) of a \(d\)-dimensional parameter and its asymptotic multivariate normal distribution. Our bounds apply in situations in which the MLE can be written as a function of a sum of i.i.d. \(t\)-dimensional random vectors. We apply our general bound to establish a bound for the multivariate normal approximation of the MLE of the normal distribution with unknown mean and variance.

\textbf{References}

\textit{Key words and phrases.} Multi-parameter maximum likelihood estimation, multivariate normal distribution, Stein’s method.
Application of weighted and unordered majorization orders in comparisons of parallel systems with exponentiated generalized gamma components

Abedin Haidaria, Amir T. Payandeh Najafabadia and Narayanaswamy Balakrishnanb

aDepartment of Mathematical Sciences, Shahid Beheshti University
bDepartment of Mathematics and Statistics, McMaster University

Abstract. Consider two parallel systems, say \(A\) and \(B\), with respective lifetimes \(T_1\) and \(T_2\) wherein independent component lifetimes of each system follow exponentiated generalized gamma distribution with possibly different exponential shape and scale parameters. We show here that \(T_2\) is smaller than \(T_1\) with respect to the usual stochastic order (reversed hazard rate order) if the vector of logarithm (the main vector) of scale parameters of System \(B\) is weakly weighted majorized by that of System \(A\), and if the vector of exponential shape parameters of System \(A\) is unordered majorized by that of System \(B\). By means of some examples, we show that the above results cannot be extended to the hazard rate and likelihood ratio orders. However, when the scale parameters of each system divide into two homogeneous groups, we verify that the usual stochastic and reversed hazard rate orders can be extended, respectively, to the hazard rate and likelihood ratio orders. The established results complete and strengthen some of the known results in the literature.

References

\textit{IEEE Transactions on Reliability} \textbf{64}, 333–348.

\textit{Probability in the Engineering and Informational Sciences} \textbf{27}, 403–443. MR3150103 https://doi.org/10.1017/S0269964813000156

\textit{Australian and New Zealand Journal of Statistics} \textbf{41}, 173–188. MR1705342 https://doi.org/10.1111/1467-842X.00072

Key words and phrases. Exponentiated generalized gamma distribution, parallel system, stochastic orders, unordered majorization, weighted majorization.

On estimating the location parameter of the selected exponential population under the LINEX loss function

Mohd Arshad and Omer Abdalghani
Aligarh Muslim University

Abstract. Suppose that $\pi_1, \pi_2, \ldots, \pi_k$ be k (≥ 2) independent exponential populations having unknown location parameters $\mu_1, \mu_2, \ldots, \mu_k$ and known scale parameters $\sigma_1, \ldots, \sigma_k$. Let $\mu_k = \max\{\mu_1, \ldots, \mu_k\}$. For selecting the population associated with μ_k, a class of selection rules (proposed by Arshad and Misra [Statistical Papers 57 (2016) 605–621]) is considered. We consider the problem of estimating the location parameter μ_S of the selected population under the criterion of the LINEX loss function. We consider three natural estimators $\delta_{N,1}$, $\delta_{N,2}$ and $\delta_{N,3}$ of μ_S, based on the maximum likelihood estimators, uniformly minimum variance unbiased estimator (UMVUE) and minimum risk equivariant estimator (MREE) of μ_k's, respectively. The uniformly minimum risk unbiased estimator (UMRUE) and the generalized Bayes estimator of μ_S are derived. Under the LINEX loss function, a general result for improving a location-equivariant estimator of μ_S is derived. Using this result, estimator better than the natural estimator $\delta_{N,1}$ is obtained. We also shown that the estimator $\delta_{N,1}$ is dominated by the natural estimator $\delta_{N,3}$. Finally, we perform a simulation study to evaluate and compare risk functions among various competing estimators of μ_S.

References

Key words and phrases. Exponential populations, estimation after selection, equivariant estimators, LINEX loss function, inadmissible estimators, UMRU estimator.

A note on the “L-logistic regression models: Prior sensitivity analysis, robustness to outliers and applications”

Saralees Nadarajah and Yuancheng Si
School of Mathematics, University of Manchester

References

Key words and phrases. L-logistic distribution, moments, Wright generalized hypergeometric function.
W¹,p-Solutions of the transport equation by stochastic perturbation

David A. C. Mollinedo
Universidade Tecnológica Federal do Paraná

Abstract. We consider the stochastic transport equation with a possibly unbounded Hölder continuous vector field. Well-posedness is proved, namely, we show existence, uniqueness and strong stability of W¹,p-weak solutions.

References

Key words and phrases. Stochastic transport equation, stochastic characteristic method, regularization.

AIMS AND SCOPE

The Brazilian Journal of Probability and Statistics aims to publish high quality research papers in applied probability, applied statistics, computational statistics, mathematical statistics, probability theory and stochastic processes.

More specifically, the following types of contributions will be considered:

(i) Original articles dealing with methodological developments, comparison of competing techniques or their computational aspects;
(ii) Original articles developing theoretical results;
(iii) Articles that contain novel applications of existing methodologies to practical problems. For these papers the focus is in the importance and originality of the applied problem, as well as, applications of the best available methodologies to solve it.
(iv) Survey articles containing a thorough coverage of topics of broad interest to probability and statistics. The journal will occasionally publish book reviews, invited papers and essays on the teaching of statistics.

GENERAL INFORMATION

Submissions: Manuscripts for Brazilian Journal of Probability and Statistics should be submitted online. Authors may access the Electronic Journals Management System (EJMS) at http://www.e-publications.org/ims/submission.

Permissions Policy. Authorization to photocopy items for internal or personal use is granted by the Institute of Mathematical Statistics. For multiple copies or reprint permission, contact The Copyright Clearance Center, 222 Rosewood Drive, Danvers, Massachusetts 01923. Telephone (978) 750-8400. http://www.copyright.com. If the permission is not found at the Copyright Clearance Center, please contact the IMS Business Office: ims@imstat.org.

Correspondence. Mail concerning membership, subscriptions, nonreceipt claims, copyright permissions, advertising or back issues should be sent to the IMS Dues and Subscription Office, 9650 Rockville Pike, Suite L 2510, Bethesda, Maryland 20814-3998. Mail concerning submissions or editorial content should be sent to the Editor at nancy@ime.unicamp.br. Mail concerning the production of this journal should be sent to: Geri Mattson at bjpg@mattsonpublishing.com.

Individual and Organizational Memberships: http://www.imstat.org/individual-membership/

Individual and General Subscriptions: http://www.imstat.org/orders/

The Brazilian Journal of Probability and Statistics is an IMS supported journal: http://www.imstat.org/journals-and-publications/ims-supported-journals/