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Abstract. In this paper, we focus on least squares estimator for an unknown
parameter in the drift coefficient of path-distribution dependent stochastic dif-
ferential equation driven by fractional Brownian motions with Hurst param-
eter H ∈ (1/2,1). Based on the time-discretized interacting particle systems
of the stochastic differential equation combined with the contrast function,
we discuss the consistency and asymptotic distribution of the estimator with
non-Lipschitz conditions.
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A geometric framework for multivariate jump locations estimation

Hugo Henneusea
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Abstract. Our study addresses the estimation of the locations of discon-
tinuities (or jumps) within multivariate signals from noisy observations in
the nonparametric regression setting. Departing from standard analytical ap-
proaches, we propose a new framework, based on geometric control over the
jump locations. This allows us to consider larger classes of signals, of any
dimension, with potentially wild discontinuity set (exhibiting, typically, self-
intersections and corners). We study a simple estimation procedure relying
on histogram differences and show its consistency and near-optimality for the
Hausdorff distance over these new classes. Furthermore, exploiting this new
geometric framework, we design procedures to estimate consistently several
topological descriptors of the jump locations.
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of Statistics (2003–2007) 69, 55–86. MR2385278

Gayraud, G. (2002). Minimax estimation of a discontinuity for the density. Journal of Nonparametric Statistics
14, 59–66. MR1905585 https://doi.org/10.1080/10485250211390

Hall, P. and Titterington, D. M. (1992). Edge-preserving and peak-preserving smoothing. Technometrics 34,
429–440. MR1190262 https://doi.org/10.2307/1268942

Hatcher, A. (2000). Algebraic Topology. Cambridge: Cambridge Univ. Press. MR1867354
Henneuse, H. (2024a). Persistent Diagram Estimation of Multivariate Piecewise Hölder-continuous Signals.
Henneuse, H. (2024b). Persistent Diagram Estimation of Irregular Signals: Beyond “Plug-in” Approaches.
Henneuse, H. (2024c). Persistence-based modes inference.
Islambekov, U. and Gel, Y. R. (2018). Unsupervised space–time clustering using persistent homology. Environ-

Metrics 30. MR3948462 https://doi.org/10.1002/env.2539
Kang, Y. and Qiu, P. (2014). Jump detection in blurred regression surfaces. Technometrics 56, 539–550.

MR3290623 https://doi.org/10.1080/00401706.2013.844732
Khasawneh, F. and Munch, E. (2015). Chatter detection in turning using persistent homology. Mechanical Systems

and Signal Processing 70.
Kim, J., Shin, J., Chazal, F., Rinaldo, A. and Wasserman, L. (2020). Homotopy Reconstruction via the Cech

Complex and the Vietoris–Rips Complex. MR4117767
Korostelev, A. and Tsybakov, A. (1993). Minimax Theory of Image Reconstruction. Lecture Notes in Statistics.

Berlin: Springer. MR1226450 https://doi.org/10.1007/978-1-4612-2712-0
McDonald, J. A. and Owen, A. B. (1986). Smoothing with split linear fits. Technometrics 28, 195–208.

MR0853113 https://doi.org/10.2307/1269075
Meng, Z., Anand, D. V., Lu, Y., Wu, J. and Xia, K. (2019). Weighted persistent homology for biomolecular data

analysis. Scientific Reports 10.
Muller, H.-G. (1992). Change-points in nonparametric regression analysis. The Annals of Statistics 20, 737–761.

MR1165590 https://doi.org/10.1214/aos/1176348654
Muller, H. G. and Song, K. S. (1994). Maximin estimation of multidimensional boundaries. Journal of Multivari-

ate Analysis 50, 265–281. MR1293046 https://doi.org/10.1006/jmva.1994.1042
Niyogi, P., Smale, S. and Weinberger, S. (2008). Finding the homology of submanifolds with high confidence

from random samples. Discrete & Computational Geometry 39, 419–441. MR2383768 https://doi.org/10.1007/
s00454-008-9053-2

O’Sullivan, F. and Qian, M. (1994). A regularized contrast statistic for object boundary estimation-implementation
and statistical evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 561–570.

Pascucci, V., Tricoche, X., Hagen, H. and Tierny, J. (2011). Topological Methods in Data Analysis and Visualiza-
tion: Theory, Algorithms, and Applications. Berlin: Springer. MR2849158 https://doi.org/10.1007/978-3-642-
15014-2

https://mathscinet.ams.org/mathscinet-getitem?mr=3524869
https://doi.org/10.1007/978-3-319-42545-0
https://mathscinet.ams.org/mathscinet-getitem?mr=1379050
https://mathscinet.ams.org/mathscinet-getitem?mr=2572029
https://doi.org/10.1090/mbk/069
https://mathscinet.ams.org/mathscinet-getitem?mr=3269981
https://doi.org/10.1214/14-AOS1252
https://mathscinet.ams.org/mathscinet-getitem?mr=0110078
https://doi.org/10.2307/1993504
https://doi.org/10.2307/1993504
https://mathscinet.ams.org/mathscinet-getitem?mr=2385278
https://mathscinet.ams.org/mathscinet-getitem?mr=1905585
https://doi.org/10.1080/10485250211390
https://mathscinet.ams.org/mathscinet-getitem?mr=1190262
https://doi.org/10.2307/1268942
https://mathscinet.ams.org/mathscinet-getitem?mr=1867354
https://mathscinet.ams.org/mathscinet-getitem?mr=3948462
https://doi.org/10.1002/env.2539
https://mathscinet.ams.org/mathscinet-getitem?mr=3290623
https://doi.org/10.1080/00401706.2013.844732
https://mathscinet.ams.org/mathscinet-getitem?mr=4117767
https://mathscinet.ams.org/mathscinet-getitem?mr=1226450
https://doi.org/10.1007/978-1-4612-2712-0
https://mathscinet.ams.org/mathscinet-getitem?mr=0853113
https://doi.org/10.2307/1269075
https://mathscinet.ams.org/mathscinet-getitem?mr=1165590
https://doi.org/10.1214/aos/1176348654
https://mathscinet.ams.org/mathscinet-getitem?mr=1293046
https://doi.org/10.1006/jmva.1994.1042
https://mathscinet.ams.org/mathscinet-getitem?mr=2383768
https://doi.org/10.1007/s00454-008-9053-2
https://doi.org/10.1007/s00454-008-9053-2
https://mathscinet.ams.org/mathscinet-getitem?mr=2849158
https://doi.org/10.1007/978-3-642-15014-2
https://doi.org/10.1007/978-3-642-15014-2


Pokorny, F. T., Hawasly, M. and Ramamoorthy, S. (2016). Topological trajectory classification with filtrations of
simplicial complexes and persistent homology. The International Journal of Robotics Research 35, 204–223.

Prewitt, J. (1970). Object Enhancement and Extraction. Picture processing and Psychopictorics.
Pun, C. S., Xia, K. and Lee, S. (2018). Persistent-homology-based machine learning and its applications—a

survey. SSRN Electronic Journal.
Qaiser, T., Tsang, Y.-W., Taniyama, D., Sakamoto, N., Nakane, K., Epstein, D. and Rajpoot, N. (2019). Fast and

accurate tumor segmentation of histology images using persistent homology and deep convolutional features.
Medical Image Analysis 55, 1–14.

Qiu, P. (1992). Estimation of the number of jumps of the jump regression functions. Communications in Statistics
- Theory and Methods 23. MR1293176 https://doi.org/10.1080/03610929408831378

Qiu, P. (2002). A nonparametric procedure to detect jumps in regression surfaces. Journal of Computational and
Graphical Statistics 11, 799–822. MR1944264 https://doi.org/10.1198/106186002321018795

Qiu, P. (2005). Image Processing and Jump Regression Analysis. New York: Wiley. MR2111430 https://doi.org/
10.1002/0471733156

Qiu, P. and Yandell, B. (1997). Jump detection in regression surfaces. Journal of Computational and Graphical
Statistics 6, 332–354. MR1466871 https://doi.org/10.2307/1390737

Ravishanker, N. and Chen, R. (2021). An introduction to persistent homology for time series. Wiley Interdisci-
plinary Reviews Computational Statistics 13. MR4242810 https://doi.org/10.1002/wics.1548

Rieck, B. and Leitte, H. (2016). Exploring and comparing clusterings of multivariate data sets using persistent
homology. Computer Graphics Forum 35, 81–90.

Roberts, L. (1965). Machine Perception of 3-D Solids. Optical and Electro-optical Information Processing.
Scholtes, S. (2013). On hypersurfaces of positive reach, alternating Steiner formulæ and Hadwiger’s Problem.
Seversky, L. M., Davis, S. and Berger, M. (2016). On time-series topological data analysis: New data and op-

portunities. In 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
1014–1022.

Skraba, P., Ovsjanikov, M., Chazal, F. and Guibas, L. (2010). Persistence-based segmentation of deformable
shapes. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Workshops,
45–52.

Sun, R., Lei, T., Chen, Q., Wang, Z., Du, X., Zhao, W. and Nandi, A. K. (2022). Survey of image edge detection.
Frontiers in Signal Processing 2.

Suzuki, A., Miyazawa, M., Minto, J., Tsuji, T., Obayashi, I., Hiraoka, Y. and Ito, T. (2021). Flow estimation solely
from image data through persistent homology analysis. Scientific Reports 11.

Tsybakov, A. (2008). Introduction to Nonparametric Estimation. Berlin: Springer. MR2724359 https://doi.org/10.
1007/b13794

Turner, K., Mukherjee, S. and Boyer, D. M. (2014). Persistent homology transform for modeling shapes and
surfaces. Information and Inference 3, 310–344. MR3311455 https://doi.org/10.1093/imaiai/iau011

Umeda, Y. (2017). Time series classification via topological data analysis. Information Media & Technology 12,
228–239.

Wang, Y. (1995). Jump and sharp cusp detection by wavelets. Biometrika 82, 385–397. MR1354236 https://doi.
org/10.1093/biomet/82.2.385

Wang, Y. (1998). Change curve estimation via wavelets. Journal of the American Statistical Association 93,
163–172. MR1614616 https://doi.org/10.2307/2669613

Wong, C.-C. and Vong, C.-M. (2021). Persistent homology based graph convolution network for fine-grained 3D
shape segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
7098–7107.

Wu, J. S. and Chu, C. K. (1993). Kernel-type estimators of jump points and values of a regression function. The
Annals of Statistics 21, 1545–1566. MR1241278 https://doi.org/10.1214/aos/1176349271

Zomorodian, A. J. (2005). Topology for Computing. Cambridge Monographs on Applied and Com-
putational Mathematics. Cambridge: Cambridge University Press. MR2111929 https://doi.org/10.1017/
CBO9780511546945

https://mathscinet.ams.org/mathscinet-getitem?mr=1293176
https://doi.org/10.1080/03610929408831378
https://mathscinet.ams.org/mathscinet-getitem?mr=1944264
https://doi.org/10.1198/106186002321018795
https://mathscinet.ams.org/mathscinet-getitem?mr=2111430
https://doi.org/10.1002/0471733156
https://doi.org/10.1002/0471733156
https://mathscinet.ams.org/mathscinet-getitem?mr=1466871
https://doi.org/10.2307/1390737
https://mathscinet.ams.org/mathscinet-getitem?mr=4242810
https://doi.org/10.1002/wics.1548
https://mathscinet.ams.org/mathscinet-getitem?mr=2724359
https://doi.org/10.1007/b13794
https://doi.org/10.1007/b13794
https://mathscinet.ams.org/mathscinet-getitem?mr=3311455
https://doi.org/10.1093/imaiai/iau011
https://mathscinet.ams.org/mathscinet-getitem?mr=1354236
https://doi.org/10.1093/biomet/82.2.385
https://doi.org/10.1093/biomet/82.2.385
https://mathscinet.ams.org/mathscinet-getitem?mr=1614616
https://doi.org/10.2307/2669613
https://mathscinet.ams.org/mathscinet-getitem?mr=1241278
https://doi.org/10.1214/aos/1176349271
https://mathscinet.ams.org/mathscinet-getitem?mr=2111929
https://doi.org/10.1017/CBO9780511546945
https://doi.org/10.1017/CBO9780511546945


Brazilian Journal of Probability and Statistics
2025, Vol. 39, No. 3, 348–365
https://doi.org/10.1214/25-BJPS638
© Brazilian Statistical Association, 2025

Quantile importance sampling

Jyotishka Datta1,a and Nicholas G. Polson2,b

1Department of Statistics, Virginia Tech, Blacksburg, Virginia, USA, ajyotishka@vt.edu
2Booth School of Business, University of Chicago, Chicago, Illinois, USA, bngp@chicagobooth.edu

Abstract. In Bayesian inference, the approximation of integrals of the form
ψ = 𝔼F l(X) = ∫︁

χ l(x) dF (x) is a fundamental challenge. Such integrals are
crucial for evidence estimation, which is important for various purposes, in-
cluding model selection and numerical analysis. The existing strategies for
evidence estimation are classified into four categories: deterministic approx-
imation, density estimation, importance sampling and vertical representation
(SIAM Review 65 (2023) 3–58). In this paper, we show that the Riemann sum
estimator due to (SIAM Journal on Numerical Analysis 15 (1978) 1289–1300)
can be used in the context of nested sampling (Bayesian Analysis 1 (2006)
833–859) to achieve a O(n−4) rate of convergence, faster than the usual er-
godic central limit theorem, under certain regularity conditions. We provide a
brief overview of the literature on the Riemann sum estimators and the nested
sampling algorithm and its connections to vertical likelihood Monte Carlo.
We provide theoretical and numerical arguments to show how merging these
two ideas may result in improved and more robust estimators for evidence
estimation, especially in higher-dimensional spaces. We also briefly discuss
the idea of simulating the Lorenz curve that avoids the problem of intractable
Λ functions, essential for the vertical representation and nested sampling.
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Abstract. This study addresses a significant statistical challenge: estimating
population variance in the context of ranked set sampling (RSS). The sce-
nario is particularly complex due to the presence of both study and auxiliary
variables that exhibit multiplicative and additive scrambled responses. This
intricacy necessitates a robust approach to estimate the population variance
accurately. To assess the performance and effectiveness of the proposed es-
timator, both simulation and empirical studies have been conducted. These
studies were designed to rigorously evaluate the efficacy of the new estimator
in comparison to existing methods. The results obtained from these investiga-
tions indicate that the proposed estimator demonstrates significant dominance
over the natural estimator of population variance, highlighting its reliability
and accuracy in practical applications.
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Abstract. Missing data is a common issue across fields such as engineering,
finance, healthcare and social sciences. If not addressed appropriately, it can
lead to biased analyses and reduced statistical power. This paper introduces a
family of novel Exponential-Type Imputation Models (NEtIMs) designed un-
der three distinct strategies to handle missing data effectively. These models
exploit the properties of newly formulated mean estimators by incorporating
measures such as absolute relative bias and mean squared error to better cap-
ture uncertainty. The performance of NEtIMs is evaluated through extensive
simulations on both symmetric and asymmetric datasets, as well as real-world
data. Results show that NEtIMs consistently outperform conventional impu-
tation methods in terms of accuracy, efficiency and robustness across different
missing data mechanisms. Additionally, optimality constraints are established
to demonstrate the broader applicability and reliability of the proposed mean
estimators formulated through NEtIMs.
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