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Sample-Based Planning and Learning with
Function Approximation
Tor Lattimore and Csaba Szepesvári

Abstract. We give a short tutorial on sample-based planning and learning
with function approximation for reinforcement learning. The focus is on ex-
plaining the standard setups and algorithm design principles. The core algo-
rithmic ideas explained are approximate backwards induction, the (Bellman)
eluder dimension and the optimism principle.

Key words and phrases: Reinforcement learning, planning.
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SZEPESVÁRI, C. (2022). Efficient local planning with linear
function approximation. In International Conference on Algo-
rithmic Learning Theory 1165–1192. PMLR.

[57] ZANETTE, A. and BRUNSKILL, E. (2019). Tighter problem-
dependent regret bounds in reinforcement learning without do-
main knowledge using value function bounds. In International
Conference on Machine Learning 7304–7312. PMLR.

https://mathscinet.ams.org/mathscinet-getitem?mr=0117842
https://doi.org/10.4153/CJM-1960-030-4
https://mathscinet.ams.org/mathscinet-getitem?mr=0673081
https://doi.org/10.1109/TAC.1982.1102878
https://doi.org/10.1109/TAC.1982.1102878
https://mathscinet.ams.org/mathscinet-getitem?mr=0776826
https://doi.org/10.1016/0196-8858(85)90002-8
https://arxiv.org/abs/1911.07676
https://mathscinet.ams.org/mathscinet-getitem?mr=4399750
https://doi.org/10.1109/FOCS52979.2021.00097
https://doi.org/10.1109/FOCS52979.2021.00097
https://mathscinet.ams.org/mathscinet-getitem?mr=2417255
https://mathscinet.ams.org/mathscinet-getitem?mr=1445620
https://doi.org/10.2307/2171751
https://doi.org/10.2307/2171751
https://mathscinet.ams.org/mathscinet-getitem?mr=3889951
https://mathscinet.ams.org/mathscinet-getitem?mr=1866295
https://mathscinet.ams.org/mathscinet-getitem?mr=4647095
https://doi.org/10.1007/978-3-031-01551-9
https://mathscinet.ams.org/mathscinet-getitem?mr=3522166
https://doi.org/10.1137/1.9781611974386.ch1
https://doi.org/10.1137/1.9781611974386.ch1
https://arxiv.org/abs/2005.00527
https://arxiv.org/abs/2005.10804
https://mathscinet.ams.org/mathscinet-getitem?mr=3685265
https://doi.org/10.1287/moor.2016.0826
https://doi.org/10.1287/moor.2016.0826


[58] ZANETTE, A., LAZARIC, A., KOCHENDERFER, M. and BRUN-
SKILL, E. (2020). Learning near optimal policies with low in-
herent Bellman error. In International Conference on Machine
Learning 10978–10989. PMLR.

[59] ZANETTE, A., LAZARIC, A., KOCHENDERFER, M. J. and BRUN-
SKILL, E. (2019). Limiting extrapolation in linear approximate
value iteration. Adv. Neural Inf. Process. Syst. 32.

[60] ZHANG, X., SONG, Y., UEHARA, M., WANG, M., AGARWAL, A.
and SUN, W. (2022). Efficient reinforcement learning in block
mdps: A model-free representation learning approach. In In-

ternational Conference on Machine Learning 26517–26547.
PMLR.

[61] ZHANG, Z., JI, X. and DU, S. (2022). Horizon-free reinforcement
learning in polynomial time: The power of stationary policies. In
Conference on Learning Theory 3858–3904. PMLR.

[62] ZIMMERT, J. and LATTIMORE, T. (2022). Return of the bias:
Almost minimax optimal high probability bounds for adversar-
ial linear bandits. In Proceedings of Thirty Fifth Conference on
Learning Theory (P.-L. Loh and M. Raginsky, eds.). Proceedings
of Machine Learning Research 178 3285–3312. PMLR.



Statistical Science
2025, Vol. 40, No. 4, 546–569
https://doi.org/10.1214/25-STS1008
© Institute of Mathematical Statistics, 2025

On the Statistical Complexity for Offline and
Low-Adaptive Reinforcement Learning with
Structures
Ming Yin, Mengdi Wang and Yu-Xiang Wang

Abstract. This article reviews the recent advances on the statistical founda-
tion of reinforcement learning (RL) in the offline and low-adaptive settings.
We will start by arguing why offline RL is the appropriate model for almost
any real-life ML problems, even if they have nothing to do with the recent
AI breakthroughs that use RL. Then we will zoom into two fundamental
problems of offline RL: offline policy evaluation (OPE) and offline policy
learning (OPL). It may be surprising to people that tight bounds for these
problems were not known even for tabular and linear cases until recently. We
delineate the differences between worst-case minimax bounds and instance-
dependent bounds. We also cover key algorithmic ideas and proof techniques
behind near-optimal instance-dependent methods in OPE and OPL. Finally,
we discuss the limitations of offline RL and review a burgeoning problem of
low-adaptive exploration which addresses these limitations by providing a
sweet middle ground between offline and online RL.

Key words and phrases: Sample complexity, offline reinforcement learn-
ing, low-adaptive exploration.
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Offline Reinforcement Learning in Large
State Spaces: Algorithms and Guarantees
Nan Jiang and Tengyang Xie

Abstract. This article introduces the theory of offline reinforcement learn-
ing in large state spaces, where good policies are learned from historical data
without online interactions with the environment. Key concepts introduced
include expressivity assumptions on function approximation (e.g., Bellman-
completeness vs. realizability) and data coverage (e.g., all-policy vs. single-
policy coverage). A rich landscape of algorithms and results is described,
depending on the assumptions one is willing to make and the sample and
computational complexity guarantees one wishes to achieve. We also discuss
open questions and connections to adjacent areas.
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mation.
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The Central Role of the Loss Function in
Reinforcement Learning
Kaiwen Wang, Nathan Kallus and Wen Sun

Abstract. This paper illustrates the central role of loss functions in data-
driven decision making, providing a comprehensive survey on their influence
in cost-sensitive classification (CSC) and reinforcement learning (RL). We
demonstrate how different regression loss functions affect the sample effi-
ciency and adaptivity of value-based, decision-making algorithms. Across
multiple settings, we prove that algorithms using the binary cross-entropy
loss achieve first-order bounds scaling with the optimal policy’s cost and
are much more efficient than the commonly used squared loss. Moreover,
we prove that distributional algorithms using the maximum likelihood loss
achieve second-order bounds scaling with the policy variance and are even
sharper than first-order bounds. This in particular proves the benefits of dis-
tributional RL. We hope that this paper serves as a guide analyzing decision-
making algorithms with varying loss functions, and can inspire the reader to
seek out better loss functions to improve any decision-making algorithm.

Key words and phrases: First-order (small-loss) and second-order (vari-
ance-dependent) bounds, RL with function approximation, distributional RL.
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Partially Observable RL: Benign Structures
and Simple Generic Algorithms
Qinghua Liu and Chi Jin

Abstract. Partially observable Reinforcement Learning (RL) applications,
where agents must make a series of decisions without complete knowledge of
the underlying states of the system, are widespread. Partially observable RL
can be notoriously difficult—well-known information-theoretic results show
that learning partially observable Markov decision processes (POMDPs) re-
quires an exponential number of samples in the worst case. However, this
does not preclude the possibility of identifying rich subclasses of structured
POMDPs for which learning remains feasible.

This survey aims to offer a high-level overview of recent advancements
in learning structured POMDPs. We will identify clean and practical prob-
lem structures that facilitate sample-efficient learning. Additionally, we will
introduce simple and generic algorithms for learning POMDPs under dif-
ferent structural conditions. Finally, we will provide a unified view of these
results under the framework of well-conditioned predictive state representa-
tion, which further reveals new tractable classes of partially observable prob-
lems along the way.

Key words and phrases: Partially observable reinforcement learning.
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[6] ȦSTRÖM, K. J. (2012). Introduction to Stochastic Control The-
ory. Courier Corporation.

[7] AUER, P. (2002). Using confidence bounds for exploitation-
exploration trade-offs. J. Mach. Learn. Res. 3 397–422.
MR1984023 https://doi.org/10.1162/153244303321897663

[8] AZAR, M. G., OSBAND, I. and MUNOS, R. (2017). Minimax re-
gret bounds for reinforcement learning. In International Confer-

ence on Machine Learning 263–272. PMLR.
[9] AZIZZADENESHELI, K., LAZARIC, A. and ANANDKUMAR, A.

(2016). Reinforcement learning of POMDPs using spectral meth-
ods. In Conference on Learning Theory 193–256. PMLR.

[10] BERNSTEIN, D. S., GIVAN, R., IMMERMAN, N. and ZILBER-
STEIN, S. (2002). The complexity of decentralized control of
Markov decision processes. Math. Oper. Res. 27 819–840.
MR1939179 https://doi.org/10.1287/moor.27.4.819.297

[11] BRAFMAN, R. I. and TENNENHOLTZ, M. (2002). R-MAX—a
general polynomial time algorithm for near-optimal reinforce-
ment learning. J. Mach. Learn. Res. 3 213–231. MR1971337
https://doi.org/10.1162/153244303765208377

[12] BROWN, N. and SANDHOLM, T. (2019). Superhuman AI for mul-
tiplayer poker. Science 365 885–890. MR3966356 https://doi.
org/10.1126/science.aay2400

[13] BRUNSKILL, E. and LI, L. (2013). Sample complexity of multi-
task reinforcement learning. arXiv preprint. Available at arXiv:
1309.6821.

[14] CAMPBELL, M., HOANE JR, A. J. and HSU, F.-H. (2002). Deep
blue. Artif. Intell. 134 57–83.

[15] CHADES, I., CARWARDINE, J., MARTIN, T., NICOL, S., SAB-
BADIN, R. and BUFFET, O. (2012). Momdps: A solution for
modelling adaptive management problems. In Proceedings of the
AAAI Conference on Artificial Intelligence 26 267–273.

[16] CHEN, F., BAI, Y. and MEI, S. (2022). Partially observable rl
with b-stability: Unified structural condition and sharp sample-
efficient algorithms. arXiv preprint. Available at arXiv:2209.
14990.

Qinghua Liu is a postdoc researcher at Microsoft Research, NYC, USA (e-mail: qinghual@princeton.edu). Chi Jin is an assistant
professor at Princeton University, Princeton, USA (e-mail: chij@princeton.edu).

https://imstat.org/journals-and-publications/statistical-science/
https://doi.org/10.1214/25-STS1012
https://www.imstat.org
https://arxiv.org/abs/1910.07113
https://arxiv.org/abs/2403.00993
https://arxiv.org/abs/2403.00993
https://mathscinet.ams.org/mathscinet-getitem?mr=3270750
https://mathscinet.ams.org/mathscinet-getitem?mr=0173570
https://doi.org/10.1016/0022-247X(65)90154-X
https://doi.org/10.1016/0022-247X(65)90154-X
https://mathscinet.ams.org/mathscinet-getitem?mr=1984023
https://doi.org/10.1162/153244303321897663
https://mathscinet.ams.org/mathscinet-getitem?mr=1939179
https://doi.org/10.1287/moor.27.4.819.297
https://mathscinet.ams.org/mathscinet-getitem?mr=1971337
https://doi.org/10.1162/153244303765208377
https://mathscinet.ams.org/mathscinet-getitem?mr=3966356
https://doi.org/10.1126/science.aay2400
https://doi.org/10.1126/science.aay2400
https://arxiv.org/abs/1309.6821
https://arxiv.org/abs/1309.6821
https://arxiv.org/abs/2209.14990
https://arxiv.org/abs/2209.14990
mailto:qinghual@princeton.edu
mailto:chij@princeton.edu


[17] CHEN, F., MEI, S. and BAI, Y. (2025). Unified algorithms
for RL with decision-estimation coefficients: PAC, reward-free,
preference-based learning and beyond. Ann. Statist. 53 426–456.
MR4865022 https://doi.org/10.1214/24-aos2483

[18] CHEN, F., WANG, H., XIONG, C., MEI, S. and BAI, Y. (2023).
Lower bounds for learning in revealing pomdps. In International
Conference on Machine Learning 5104–5161. PMLR.

[19] GUO, Z. D., DOROUDI, S. and BRUNSKILL, E. (2016). A PAC
RL algorithm for episodic POMDPs. In Artificial Intelligence
and Statistics 510–518. PMLR.

[20] DU, S., KRISHNAMURTHY, A., JIANG, N., AGARWAL, A.,
DUDIK, M. and LANGFORD, J. (2019). Provably efficient rl with
rich observations via latent state decoding. In International Con-
ference on Machine Learning 1665–1674. PMLR.

[21] EFRONI, Y. and JIN, C. (2022). Akshay Krishnamurthy, and Sob-
han Miryoosefi. Provable reinforcement learning with a short-
term memory. arXiv preprint. Available at arXiv:2202.03983.

[22] EVEN-DAR, E., KAKADE, S. M. and MANSOUR, Y. (2007). The
value of observation for monitoring dynamic systems. In IJCAI
2474–2479.

[23] FOSTER, D. J., KAKADE, S. M., QIAN, J. and RAKHLIN, A.
(2021). The statistical complexity of interactive decision mak-
ing. arXiv preprint. Available at arXiv:2112.13487.

[24] GEER, S. A., VAN DE GEER, S. and WILLIAMS, D. (2000). Em-
pirical Processes in M-Estimation 6. Cambridge Univ. Press,
Cambridge.

[25] GOLOWICH, N., MOITRA, A. and ROHATGI, D. (2022). Learn-
ing in observable pomdps, without computationally intractable
oracles. Adv. Neural Inf. Process. Syst. 35 1458–1473.

[26] GOLOWICH, N., MOITRA, A. and ROHATGI, D. (2022). Planning
in observable POMDPs in quasipolynomial time. arXiv preprint.
Available at arXiv:2201.04735.

[27] GUO, J., CHEN, M., WANG, H., XIONG, C., WANG, M. and
BAI, Y. (2023). Sample-efficient learning of pomdps with multi-
ple observations in hindsight. arXiv preprint. Available at arXiv:
2307.02884.

[28] GUO, J., LI, Z., WANG, H., WANG, M., YANG, Z. and ZHANG, X.
(2023). Provably efficient representation learning with tractable
planning in low-rank pomdp. In International Conference on
Machine Learning 11967–11997. PMLR.

[29] HAUSKRECHT, M. and FRASER, H. (2000). Planning treatment
of ischemic heart disease with partially observable Markov deci-
sion processes. Artif. Intell. Med. 18 221–244.

[30] HO, B. L. and KALMAN, R. E. (1966). Effective construction
of linear state-variable models from input/output functions: Die
konstruktion von linearen modeilen in der darstellung durch zus-
tandsvariable aus den beziehungen für ein-und ausgangsgrößen.
Automatisierungstechnik 14 545–548.

[31] HSU, D., KAKADE, S. M. and ZHANG, T. (2012). A spectral
algorithm for learning hidden Markov models. J. Comput. Sys-
tem Sci. 78 1460–1480. MR2926144 https://doi.org/10.1016/j.
jcss.2011.12.025

[32] JAEGER, H. (1998). Discrete-time, Discrete-valued Observable
Operator Models: a Tutorial. GMD-Forschungszentrum Informa-
tionstechnik Darmstadt, Germany.

[33] JAKSCH, T., ORTNER, R. and AUER, P. (2010). Near-optimal re-
gret bounds for reinforcement learning. J. Mach. Learn. Res. 11
1563–1600. MR2645461

[34] JIANG, N., KRISHNAMURTHY, A., AGARWAL, A., LANG-
FORD, J. and SCHAPIRE, R. E. (2017). Contextual decision pro-
cesses with low Bellman rank are PAC-learnable. In Interna-
tional Conference on Machine Learning 1704–1713. PMLR.

[35] JIN, C., ALLEN-ZHU, Z., BUBECK, S. and JORDAN, M. I. (2018).
Is Q-learning provably efficient? Adv. Neural Inf. Process. Syst.
31.

[36] JIN, C., KAKADE, S. M., KRISHNAMURTHY, A. and LIU, Q.
(2020). Sample-efficient reinforcement learning of undercom-
plete POMDPs. Adv. Neural Inf. Process. Syst.

[37] JIN, C., LIU, Q. and MIRYOOSEFI, S. (2021). Bellman eluder di-
mension: New rich classes of RL problems, and sample-efficient
algorithms. Adv. Neural Inf. Process. Syst. 34.

[38] JIN, C., LIU, Q., WANG, Y. and YU, T. (2024). V-learning—
a simple, efficient, decentralized algorithm for multiagent
reinforcement learning. Math. Oper. Res. 49 2295–2322.
MR4838262 https://doi.org/10.1287/moor.2021.0317

[39] KALMAN, R. E. (1960). A new approach to linear filtering and
prediction problems. J. Basic Eng. 82 35–45. MR3931993

[40] KREPS, D. M. (1990). Game Theory and Economic Modelling.
Oxford Univ. Press, London.

[41] KRISHNAMURTHY, A., AGARWAL, A. and LANGFORD, J.
(2016). PAC reinforcement learning with rich observations. Adv.
Neural Inf. Process. Syst. 29.

[42] KWON, J., EFRONI, Y., CARAMANIS, C. and MANNOR, S.
(2021). Reinforcement learning in reward-mixing mdps. Adv.
Neural Inf. Process. Syst. 34 2253–2264.

[43] KWON, J., EFRONI, Y., CARAMANIS, C. and MANNOR, S.
(2021). Rl for latent mdps: Regret guarantees and a lower bound.
Adv. Neural Inf. Process. Syst. 34 24523–24534.

[44] KWON, J., EFRONI, Y., CARAMANIS, C. and MANNOR, S.
(2023). Reward-mixing mdps with few latent contexts are
learnable. In International Conference on Machine Learning
18057–18082. PMLR.

[45] KWON, J., MANNOR, S., CARAMANIS, C. and EFRONI, Y.
(2024). Rl in latent mdps is tractable: Online guarantees via off-
policy evaluation. arXiv preprint. Available at arXiv:2406.01389.

[46] LALE, S., AZIZZADENESHELI, K., HASSIBI, B. and ANANDKU-
MAR, A. (2020). Logarithmic regret bound in partially observ-
able linear dynamical systems. Adv. Neural Inf. Process. Syst. 33
20876–20888.

[47] LATTIMORE, T. and SZEPESVÁRI, C. (2020). Bandit Algorithms.
Cambridge Univ. Press, Cambridge.

[48] LEE, J., AGARWAL, A., DANN, C. and ZHANG, T. (2023). Learn-
ing in pomdps is sample-efficient with hindsight observability.
In International Conference on Machine Learning 18733–18773.
PMLR.

[49] LEURGANS, S. E., ROSS, R. T. and ABEL, R. B. (1993). A de-
composition for three-way arrays. SIAM J. Matrix Anal. Appl. 14
1064–1083. MR1238921 https://doi.org/10.1137/0614071

[50] LEVINSON, J., ASKELAND, J., BECKER, J., DOLSON, J.,
HELD, D., KAMMEL, S., KOLTER, J. Z., LANGER, D., PINK, O.
et al. (2011). Towards fully autonomous driving: Systems and
algorithms. In 2011 IEEE Intelligent Vehicles Symposium (IV)
163–168 IEEE Press, London.

[51] LITTMAN, M. and SUTTON, R. S. (2001). Predictive representa-
tions of state. Adv. Neural Inf. Process. Syst. 14.

[52] LITTMAN, M. L. (1994). Markov games as a framework for
multi-agent reinforcement learning. In Machine Learning Pro-
ceedings 1994 157–163. Elsevier, Amsterdam.

[53] LIU, Q., CHUNG, A., SZEPESVARI, C. and JIN, C. When is par-
tially observable reinforcement learning not scary? In Proceed-
ings of Thirty Fifth Conference on Learning Theory. Proceed-
ings of Machine Learning Research 178 5175–5220. Available
at https://proceedings.mlr.press/v178/liu22f.html.

[54] LIU, Q., NETRAPALLI, P., SZEPESVARI, C. and JIN, C.
(2023). Optimistic MLE: A generic model-based algo-
rithm for partially observable sequential decision making. In
STOC’23—Proceedings of the 55th Annual ACM Symposium on
Theory of Computing 363–376. ACM, New York. MR4617392
https://doi.org/10.1145/3564246.3585161

https://mathscinet.ams.org/mathscinet-getitem?mr=4865022
https://doi.org/10.1214/24-aos2483
https://arxiv.org/abs/2202.03983
https://arxiv.org/abs/2112.13487
https://arxiv.org/abs/2201.04735
https://arxiv.org/abs/2307.02884
https://arxiv.org/abs/2307.02884
https://mathscinet.ams.org/mathscinet-getitem?mr=2926144
https://doi.org/10.1016/j.jcss.2011.12.025
https://doi.org/10.1016/j.jcss.2011.12.025
https://mathscinet.ams.org/mathscinet-getitem?mr=2645461
https://mathscinet.ams.org/mathscinet-getitem?mr=4838262
https://doi.org/10.1287/moor.2021.0317
https://mathscinet.ams.org/mathscinet-getitem?mr=3931993
https://arxiv.org/abs/2406.01389
https://mathscinet.ams.org/mathscinet-getitem?mr=1238921
https://doi.org/10.1137/0614071
https://proceedings.mlr.press/v178/liu22f.html
https://mathscinet.ams.org/mathscinet-getitem?mr=4617392
https://doi.org/10.1145/3564246.3585161


[55] LIU, Q., SZEPESVÁRI, C. and JIN, C. (2022). Sample-efficient re-
inforcement learning of partially observable Markov games. Adv.
Neural Inf. Process. Syst. 35 18296–18308.

[56] LIU, X. and ZHANG, K. (2023). Partially observable multi-agent
rl with (quasi-) efficiency: The blessing of information sharing.
In International Conference on Machine Learning 22370–22419.
PMLR.

[57] LJUNG, L. (1998). System identification. In Signal Analysis and
Prediction 163–173 Springer, Berlin.

[58] LU, M., MIN, Y., WANG, Z. and YANG, Z. (2022). Pessimism
in the face of confounders: Provably efficient offline reinforce-
ment learning in partially observable Markov decision processes.
arXiv preprint. Available at arXiv:2205.13589.

[59] MANIA, H., TU, S. and RECHT, B. (2019). Certainty equivalence
is efficient for linear quadratic control. Adv. Neural Inf. Process.
Syst. 32.

[60] MNIH, V., KAVUKCUOGLU, K., SILVER, D., GRAVES, A.,
ANTONOGLOU, I., WIERSTRA, D. and RIEDMILLER, M. (2013).
Playing atari with deep reinforcement learning. arXiv preprint.
Available at arXiv:1312.5602.

[61] MOSSEL, E. and ROCH, S. (2005). Learning nonsingular phy-
logenies and hidden Markov models. In STOC’05: Proceedings
of the 37th Annual ACM Symposium on Theory of Computing
366–375. ACM, New York. MR2181638 https://doi.org/10.1145/
1060590.1060645

[62] MUNDHENK, M., GOLDSMITH, J., LUSENA, C. and ALLEN-
DER, E. (2000). Complexity of finite-horizon Markov decision
process problems. J. ACM 47 681–720. MR1866174 https://doi.
org/10.1145/347476.347480

[63] OYMAK, S. and OZAY, N. (2019). Non-asymptotic identification
of lti systems from a single trajectory. In 2019 American Control
Conference (ACC) 5655–5661. IEEE Press, London.

[64] OYMAK, S. and OZAY, N. (2022). Revisiting Ho–Kalman-
based system identification: Robustness and finite-sample anal-
ysis. IEEE Trans. Automat. Control 67 1914–1928. MR4402414
https://doi.org/10.1109/tac.2021.3083651

[65] PAPADIMITRIOU, C. H. and TSITSIKLIS, J. N. (1987). The
complexity of Markov decision processes. Math. Oper. Res. 12
441–450. MR0906416 https://doi.org/10.1287/moor.12.3.441

[66] SHAPLEY, L. S. (1953). Stochastic games. Proc. Natl. Acad. Sci.
USA 39 1095–1100. MR0061807 https://doi.org/10.1073/pnas.
39.10.1953

[67] SHI, C., UEHARA, M., HUANG, J. and JIANG, N. (2022). A min-
imax learning approach to off-policy evaluation in confounded
partially observable Markov decision processes. In International
Conference on Machine Learning 20057–20094. PMLR.

[68] SILVER, D., SCHRITTWIESER, J., SIMONYAN, K.,
ANTONOGLOU, I., HUANG, A., GUEZ, A., HUBERT, T.,
BAKER, L., LAI, M. et al. (2017). Mastering the game of go
without human knowledge. Nature 550 354–359.

[69] SIMCHOWITZ, M., SINGH, K. and HAZAN, E. (2020). Improper
learning for non-stochastic control. In Conference on Learning
Theory 3320–3436. PMLR.

[70] SINGH, S., JAMES, M. and RUDARY, M. (2012). Predictive state
representations: a new theory for modeling dynamical systems.
arXiv preprint. Available at arXiv:1207.4167.

[71] STEIMLE, L. N., KAUFMAN, D. L. and DENTON, B. T.
(2021). Multi-model Markov decision processes. IISE Trans. 53
1124–1139.

[72] SZEPESVÁRI, C. (2022). Algorithms for Reinforcement Learning.
Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing 9. Springer, Cham. Reprint of the 2010 original. MR4647095
https://doi.org/10.1007/978-3-031-01551-9

[73] TIAN, Y., ZHANG, K., TEDRAKE, R. and SRA, S. (2023). Can
direct latent model learning solve linear quadratic Gaussian con-
trol? In Learning for Dynamics and Control Conference 51–63.
PMLR.

[74] TODOROV, E. and LI, W. (2005). A generalized iterative lqg
method for locally-optimal feedback control of constrained non-
linear stochastic systems. In Proceedings of the 2005, American
Control Conference, 2005 300–306. IEEE Press, New York.

[75] TSIAMIS, A. and PAPPAS, G. J. (2019). Finite sample analysis
of stochastic system identification. In 2019 IEEE 58th Confer-
ence on Decision and Control (CDC) 3648–3654. IEEE Press,
London.

[76] UEHARA, M., KIYOHARA, H., BENNETT, A., CHER-
NOZHUKOV, V., JIANG, N., KALLUS, N., SHI, C. and SUN, W.
(2024). Future-dependent value-based off-policy evaluation in
pomdps. Adv. Neural Inf. Process. Syst. 36.

[77] UEHARA, M., SEKHARI, A., LEE, J. D., KALLUS, N. and
SUN, W. (2022). Provably efficient reinforcement learning in par-
tially observable dynamical systems. Adv. Neural Inf. Process.
Syst. 35 578–592.

[78] NEUMANN, J. V. (1928). Zur Theorie der Gesellschaftsspiele.
Math. Ann. 100 295–320. MR1512486 https://doi.org/10.1007/
BF01448847

[79] VINYALS, O., BABUSCHKIN, I., CZARNECKI, W. M., MATH-
IEU, M., DUDZIK, A., CHUNG, J., CHOI, D. H., POWELL, R.,
EWALDS, T. et al. (2019). Grandmaster level in StarCraft II us-
ing multi-agent reinforcement learning. Nature 575 350–354.

[80] VLASSIS, N., LITTMAN, M. L. and BARBER, D. (2012). On the
computational complexity of stochastic controller optimization
in POMDPs. ACM Trans. Comput. Theory 4 1–8.

[81] WANG, L., CAI, Q., YANG, Z. and WANG, Z. (2022). Embed to
control partially observed systems: Representation learning with
provable sample efficiency. arXiv preprint. Available at arXiv:
2205.13476.

[82] ZHAN, W., UEHARA, M., SUN, W. and LEE, J. D. (2022). Pac
reinforcement learning for predictive state representations. arXiv
preprint. Available at arXiv:2207.05738.

[83] ZHANG, Y. and JIANG, N. (2024). On the curses of future and
history in future-dependent value functions for off-policy evalu-
ation. arXiv preprint. Available at arXiv:2402.14703.

[84] ZHENG, Y., FURIERI, L., KAMGARPOUR, M. and LI, N. (2021).
Sample complexity of linear quadratic Gaussian (lqg) control for
output feedback systems. In Learning for Dynamics and Control
559–570. PMLR.

[85] ZHONG, H., XIONG, W., ZHENG, S., WANG, L., WANG, Z.,
YANG, Z. and ZHANG, T. (2022). Gec: a unified framework for
interactive decision making in mdp, pomdp, and beyond. arXiv
preprint. Available at arXiv:2211.01962.

https://arxiv.org/abs/2205.13589
https://arxiv.org/abs/1312.5602
https://mathscinet.ams.org/mathscinet-getitem?mr=2181638
https://doi.org/10.1145/1060590.1060645
https://doi.org/10.1145/1060590.1060645
https://mathscinet.ams.org/mathscinet-getitem?mr=1866174
https://doi.org/10.1145/347476.347480
https://doi.org/10.1145/347476.347480
https://mathscinet.ams.org/mathscinet-getitem?mr=4402414
https://doi.org/10.1109/tac.2021.3083651
https://mathscinet.ams.org/mathscinet-getitem?mr=0906416
https://doi.org/10.1287/moor.12.3.441
https://mathscinet.ams.org/mathscinet-getitem?mr=0061807
https://doi.org/10.1073/pnas.39.10.1953
https://doi.org/10.1073/pnas.39.10.1953
https://arxiv.org/abs/1207.4167
https://mathscinet.ams.org/mathscinet-getitem?mr=4647095
https://doi.org/10.1007/978-3-031-01551-9
https://mathscinet.ams.org/mathscinet-getitem?mr=1512486
https://doi.org/10.1007/BF01448847
https://doi.org/10.1007/BF01448847
https://arxiv.org/abs/2205.13476
https://arxiv.org/abs/2205.13476
https://arxiv.org/abs/2207.05738
https://arxiv.org/abs/2402.14703
https://arxiv.org/abs/2211.01962


Statistical Science
2025, Vol. 40, No. 4, 641–655
https://doi.org/10.1214/25-STS998
© Institute of Mathematical Statistics, 2025

The Theory of Online Control
Elad Hazan and Karan Singh

Abstract. This article introduces the reader to the fundamentals of a novel
algorithmic paradigm in control of dynamical systems called online control.
The new approach is closely related to the decision-making framework of on-
line convex optimization. This methodology is applied together with convex
relaxations to obtain new methods that yield provable guarantees even in the
absence of distributional assumptions.

The differences between online control and other control frameworks stem
from its unorthodox objective. In optimal control, robust control, and other
control methodologies that assume stochastic noise, the goal is to design con-
trollers that perform as well as an ex ante optimal strategy. In online control,
both the cost functions as well as the perturbations to the dynamical model
are chosen online by an adversary and, therefore, the optimal policy is not
defined a priori. Instead, the objective of an online controller is to attain low
regret against the best policy chosen in hindsight from a benchmark class of
policies.

To achieve this objective, online control algorithms adapt the decision
making framework of online convex optimization to stateful systems, and are
based on iterative mathematical optimization algorithms. These algorithms
confer finite-time regret bounds and computational complexity guarantees.
After an introduction to the core algorithms and principles, we survey re-
cent advances and extensions of this methodology to time-varying systems,
deep neural controllers, partial observation, system identification, planning
and model-free reinforcement learning.

Key words and phrases: Nonstochastic control, online learning, LQR.
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Stochastic Approximation and Reinforcement
Learning: The Interface and a Little Beyond
Vivek Borkar

Abstract. This article traces the coevolution of stochastic approximation
and reinforcement learning. Beginning with a brief historical background on
both, it will highlight the points of intersection and the spin-offs thereof, sum-
marizing results in reinforcement learning that have benefited from stochastic
approximation theory. The article ends by outlining further developments and
challenges that remain.

Key words and phrases: Stochastic approximation, reinforcement learning,
almost supermartingales, “ODE” approach, convergence.
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Replicable Bandits for Digital Health
Interventions
Kelly W. Zhang, Nowell Closser, Anna L. Trella and Susan A. Murphy

Abstract. Adaptive treatment assignment algorithms, such as bandit algo-
rithms, are increasingly used in digital health intervention clinical trials. Fre-
quently, the data collected from these trials is used to conduct causal infer-
ence and related data analyses to decide how to refine the intervention and
whether to roll out the intervention more broadly. This work studies inference
for estimands that depend on the adaptive algorithm itself; a simple example
is the mean reward under the adaptive algorithm. Specifically, we investigate
the replicability of statistical analyses concerning such estimands when us-
ing data from trials deploying adaptive treatment assignment algorithms. We
demonstrate that many standard statistical estimators can be inconsistent and
fail to be replicable across repetitions of the clinical trial, even as the sample
size grows large. We show that this nonreplicability is intimately related to
properties of the adaptive algorithm itself. We introduce a formal definition of
a “replicable bandit algorithm” and prove that under such algorithms, a wide
variety of common statistical estimators are guaranteed to be consistent and
asymptotically normal. We present both theoretical results and simulation
studies based on a mobile health oral health self-care intervention. Our find-
ings underscore the importance of designing adaptive algorithms with repli-
cability in mind, especially for settings like digital health, where deployment
decisions rely heavily on replicated evidence. We conclude by discussing
open questions on the connections between algorithm design, statistical in-
ference, and experimental replicability.

Key words and phrases: bandit algorithms, digital health, replicability,
adaptive treatment assignment.
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