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Modern Statistical Models and Methods for
Estimating Fatigue-Life and Fatigue-Strength
Distributions from Experimental Data
William Q. Meeker, Luis A. Escobar, Francis G. Pascual, Yili Hong, Peng Liu, Wayne M. Falk and
Balajee Ananthasayanam

Abstract. Engineers and scientists have been collecting and analyzing fa-
tigue data since the 1800s to ensure the reliability of life-critical structures.
Applications include (but are not limited to) bridges, building structures, air-
craft and spacecraft components, ships, ground-based vehicles, and medical
devices. Engineers need to estimate S-N relationships (Stress versus Number
of cycles to failure), typically with a focus on estimating small quantiles of
the fatigue-life distribution. Estimates from this kind of model are used as
input to models (e.g., cumulative damage models) that predict failure-time
distributions under varying stress patterns. Also, design engineers need to
estimate lower-tail quantiles of the closely related fatigue-strength distribu-
tion. The history of applying incorrect statistical methods is nearly as long
and such practices continue to the present. Examples include treating the ap-
plied stress (or strain) as the response and the number of cycles to failure as
the explanatory variable in regression analyses (because of the need to es-
timate fatigue-strength distributions) and ignoring or otherwise mishandling
censored observations (known as runouts in the fatigue literature). The first
part of the paper reviews the traditional modeling approach where a fatigue-
life model is specified. Then we show how this specification induces a cor-
responding fatigue-strength model. The second part of the paper presents a
novel alternative modeling approach where a fatigue-strength model is spec-
ified and a corresponding fatigue-life model is induced. We explain and il-
lustrate the important advantages of this new modeling approach.

Key words and phrases: Bayesian inference, censored data, failure-time re-
gression, fracture, maximum likelihood, nonlinear regression, reliability, S-N
curves.
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Analysis of Linked Files: A Missing Data
Perspective
Gauri Kamat and Roee Gutman

Abstract. In many applications, researchers seek to identify overlapping
entities across multiple data files. Record linkage algorithms facilitate this
task, in the absence of unique identifiers. As these algorithms rely on semi-
identifying information, they may miss records that represent the same entity,
or incorrectly link records that do not represent the same entity. Analysis of
linked files commonly ignores such linkage errors, resulting in biased, or
overly precise estimates of the associations of interest. We view record link-
age as a missing data problem, and delineate the linkage mechanisms that
underpin analysis methods with linked files. Following the missing data lit-
erature, we group these methods under three broad categories: likelihood and
Bayesian methods, imputation methods, and weighting methods. We sum-
marize the assumptions and limitations of the methods, and evaluate their
performance in a wide range of simulation scenarios.

Key words and phrases: Record linkage, missing data, Bayesian, imputa-
tion, likelihood.
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On the Mixed-Model Analysis of Covariance
in Cluster-Randomized Trials
Bingkai Wang, Michael O. Harhay, Jiaqi Tong, Dylan S. Small, Tim P. Morris and Fan Li

Abstract. In the analyses of cluster-randomized trials, mixed-model analy-
sis of covariance (ANCOVA) is a standard approach for covariate adjustment
and handling within-cluster correlations. However, when the normality, lin-
earity, or the random-intercept assumption is violated, the validity and effi-
ciency of the mixed-model ANCOVA estimators for estimating the average
treatment effect remain unclear. Under the potential outcomes framework, we
prove that the mixed-model ANCOVA estimators for the average treatment
effect are consistent and asymptotically normal under arbitrary misspecifi-
cation of its working model. If the probability of receiving treatment is 0.5
for each cluster, we further show that the model-based variance estimator un-
der mixed-model ANCOVA1 (ANCOVA without treatment-covariate inter-
actions) remains consistent, clarifying that the confidence interval given by
standard software is asymptotically valid even under model misspecification.
Beyond robustness, we discuss several insights on precision among classical
methods for analyzing cluster-randomized trials, including the mixed-model
ANCOVA, individual-level ANCOVA, and cluster-level ANCOVA estima-
tors. These insights may inform the choice of methods in practice. Our ana-
lytical results and insights are illustrated via simulation studies and analyses
of three cluster-randomized trials.

Key words and phrases: Average treatment effect, causal inference, cluster-
randomized experiments, covariate adjustment, model robustness, precision.
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Multivariate Matérn Models—a Spectral
Approach
Drew Yarger, Stilian Stoev and Tailen Hsing

Abstract. The classical Matérn model has been a staple in spatial statis-
tics. Novel data-rich applications in environmental and physical sciences,
however, call for new, flexible vector-valued spatial and space-time models.
Therefore, the extension of the classical Matérn model has been a problem of
active theoretical and methodological interest. In this paper, we offer a new
perspective to extending the Matérn covariance model to the vector-valued
setting. We adopt a spectral, stochastic integral approach, which allows us
to address challenging issues on the validity of the covariance structure and
at the same time to obtain new, flexible, and interpretable models. In partic-
ular, our multivariate extensions of the Matérn model allow for asymmetric
covariance structures. Moreover, the spectral approach provides an essen-
tially complete flexibility in modeling the local structure of the process. We
establish closed-form representations of the cross-covariances when avail-
able, compare them with existing models, simulate Gaussian instances of
these new processes, and demonstrate estimation of the model’s parame-
ters through maximum likelihood. An application of the new class of mul-
tivariate Matérn models to data indicate their success in capturing inherent
covariance-asymmetry phenomena.

Key words and phrases: Multivariate spatial statistics, cross-covariance
functions, spectral analysis.
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Review of Quasi-Randomization Approaches
for Estimation from Nonprobability Samples
Vladislav Beresovsky, Julie Gershunskaya and Terrance D. Savitsky

Abstract. The recent proliferation of computers and the internet have
opened new opportunities for collecting and processing data. However, such
data are often obtained without a well-planned probability survey design.
Such nonprobability based samples cannot be automatically regarded as rep-
resentative of the population of interest. Several classes of methods for esti-
mation and inferences from nonprobability samples have been developed in
recent years. The quasi-randomization methods assume that nonprobability
sample selection is governed by an underlying latent random mechanism.
The basic idea is to use information collected from a probability (“refer-
ence”) sample to uncover latent nonprobability survey participation probabil-
ities (also known as “propensity scores”) and use them in estimation of target
finite population parameters. In this paper, we review and compare theoretical
properties of recently developed methods of estimation survey participation
probabilities and study their relative performances in simulations.

Key words and phrases: Data combining, nonprobability sample, reference
sample, participation probabilities, sample likelihood, variance estimation.
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Randomized and Exchangeable
Improvements of Markov’s, Chebyshev’s and
Chernoff’s Inequalities
Aaditya Ramdas and Tudor Manole

Abstract. We present simple randomized and exchangeable improvements
of Markov’s inequality, as well as Chebyshev’s inequality and Chernoff
bounds. Our variants are never worse and typically strictly more powerful
than the original inequalities. The proofs are short and elementary, and can
easily yield similarly randomized or exchangeable versions of a host of other
inequalities (e.g., martingale inequalities by Doob and Ville) that employ
Markov’s inequality as an intermediate step. We point out some simple sta-
tistical applications involving tests that combine dependent e-values. In par-
ticular, we uniformly improve the power of universal inference, and obtain
tighter betting-based nonparametric confidence intervals. Simulations reveal
nontrivial gains in power (and no losses) in a variety of settings.

Key words and phrases: Randomization, exchangeability, e-values, univer-
sal inference, Markov, Chernoff, Ville, Doob, Chebyshev, Bernstein, Hoeffd-
ing, martingales.
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What You See Is Not What Is There:
Mechanisms, Models and Methods for Point
Pattern Deviations
Peter Guttorp , Janine Illian , Joel Kostensalo , Mikko Kuronen , Mari Myllymäki ,
Aila Särkkä and Thordis L. Thorarinsdottir

Abstract. Many natural systems are observed as point patterns in time,
space, or space and time. Examples include plant and cellular systems, an-
imal colonies, earthquakes and wildfires. In practice, the locations of the
points are not always observed correctly. However, in the point process lit-
erature, there has been relatively scant attention paid to the issue of errors
in the location of points. In this paper, we discuss how the observed point
pattern may deviate from the actual point pattern and review methods and
models that exist to handle such deviations. The discussion is supplemented
with several scientific illustrations.

Key words and phrases: Ghost point, measurement error, missing data,
point process, thinning.
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A Bayesian Practitioner’s Guide to
Expectation Propagation
Jackson Zhou, Clara Grazian and John T. Ormerod

Abstract. In the field of approximate Bayesian inference, expectation prop-
agation (EP) is an often overlooked counterpart to its older Laplace approx-
imation and variational Bayes cousins, perhaps owing to a lack of theory
(especially convergence guarantees) and a higher implementation overhead,
where derivations need to be hand-crafted to the specific distributions being
approximated. However, when EP is carefully implemented, it is often more
accurate than these alternative approaches. With this in mind, the purpose
of this review paper is to describe and to consolidate the current state of re-
search on EP at a high level focusing on examples and applications. Our aim
is for this broad-based, practical EP guide to encourage its novel application
to both existing and new Bayesian problems, where it has the opportunity to
dramatically extend the cutting edge in performance.

Key words and phrases: Approximate Bayesian inference, expectation
propagation, message passing.

REFERENCES

ANCESCHI, N., FASANO, A., FRANZOLINI, B. and REBAUDO, G.
(2024). Scalable expectation propagation for generalized linear
models. Preprint. Available at arXiv:2407.02128.

ANDERSON, J. R. and PETERSON, C. (1987). A mean field the-
ory learning algorithm for neural networks. Complex Systems 1
995–1019.

BARTHELMÉ, S. and CHOPIN, N. (2014). Expectation propagation
for likelihood-free inference. J. Amer. Statist. Assoc. 109 315–333.
MR3180566 https://doi.org/10.1080/01621459.2013.864178

BARTHELMÉ, S., CHOPIN, N. and COTTET, V. (2019). Divide and con-
quer in ABC: Expectation-propagation algorithms for likelihood-
free inference. In Handbook of Approximate Bayesian Computa-
tion. Chapman & Hall/CRC Handb. Mod. Stat. Methods 415–434.
CRC Press, Boca Raton, FL. MR3889291

BLEI, D. M., KUCUKELBIR, A. and MCAULIFFE, J. D. (2017). Vari-
ational inference: A review for statisticians. J. Amer. Statist. As-
soc. 112 859–877. MR3671776 https://doi.org/10.1080/01621459.
2017.1285773

BUI, T., HERNÁNDEZ-LOBATO, D., HERNANDEZ-LOBATO, J., LI, Y.
and TURNER, R. (2016). Deep Gaussian processes for regression
using approximate expectation propagation. In International Con-
ference on Machine Learning 1472–1481. PMLR.

CAKMAK, B. and OPPER, M. (2018). Expectation propagation for ap-
proximate inference: Free probability framework. In 2018 IEEE In-
ternational Symposium on Information Theory (ISIT) 1276–1280.
IEEE.

CESPEDES, J., OLMOS, P. M., SÁNCHEZ-FERNÁNDEZ, M. and
PEREZ-CRUZ, F. (2014). Expectation propagation detection for
high-order high-dimensional MIMO systems. IEEE Trans. Com-
mun. 62 2840–2849.

CÉSPEDES, J., OLMOS, P. M., SÁNCHEZ-FERNÁNDEZ, M. and
PEREZ-CRUZ, F. (2014). Improved performance of LDPC-coded
MIMO systems with EP-based soft-decisions. In 2014 IEEE Inter-
national Symposium on Information Theory 1997–2001. IEEE.

CHOPIN, N. and RIDGWAY, J. (2017). Leave Pima Indians alone: Bi-
nary regression as a benchmark for Bayesian computation. Statist.
Sci. 32 64–87. MR3634307 https://doi.org/10.1214/16-STS581

CUI, L., WANG, S. and CHENG, S. (2012). Online SNR statistic es-
timation for LDPC decoding over AWGN channel using Laplace
propagation. In 2012 IEEE Global Communications Conference
(GLOBECOM) 3743–3747. IEEE.

CUI, L., WANG, S., CHENG, S., STANKOVIC, L. and STANKOVIC, V.
(2012). Adaptive Slepian–Wolf decoding using Laplace propaga-
tion. In 2012 Proceedings of the 20th European Signal Processing
Conference (EUSIPCO) 564–568. IEEE.

CUNNINGHAM, J. P., HENNIG, P. and LACOSTE-JULIEN, S. (2011).
Gaussian probabilities and expectation propagation. Preprint.
Available at arXiv:1111.6832.

DEHAENE, G. and BARTHELMÉ, S. (2018). Expectation propagation
in the large data limit. J. R. Stat. Soc. Ser. B. Stat. Methodol. 80
199–217. MR3744718 https://doi.org/10.1111/rssb.12241

DEHAENE, G. P. (2016). Expectation propagation performs a
smoothed gradient descent. Preprint. Available at arXiv:1612.
05053.

Jackson Zhou is a Ph.D. candidate at the School of Mathematics and Statistics, University of Sydney, Sydney, Australia (e-mail:
jzho4727@uni.sydney.edu.au). Clara Grazian is a senior lecturer at the School of Mathematics and Statistics, University of Sydney,
Sydney, Australia and Chief Investigator of the ARC Training Centre in Data Analytics for Resources and Environments (DARE),
Sydney, Australia (e-mail: clara.grazian@sydney.edu.au). John T. Ormerod is an Associate Professor at the School of Mathematics
and Statistics, University of Sydney, Sydney, Australia (e-mail: john.ormerod@sydney.edu.au).

https://imstat.org/journals-and-publications/statistical-science/
https://doi.org/10.1214/24-STS957
https://www.imstat.org
https://arxiv.org/abs/2407.02128
https://mathscinet.ams.org/mathscinet-getitem?mr=3180566
https://doi.org/10.1080/01621459.2013.864178
https://mathscinet.ams.org/mathscinet-getitem?mr=3889291
https://mathscinet.ams.org/mathscinet-getitem?mr=3671776
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080/01621459.2017.1285773
https://mathscinet.ams.org/mathscinet-getitem?mr=3634307
https://doi.org/10.1214/16-STS581
https://arxiv.org/abs/1111.6832
https://mathscinet.ams.org/mathscinet-getitem?mr=3744718
https://doi.org/10.1111/rssb.12241
https://arxiv.org/abs/1612.05053
https://arxiv.org/abs/1612.05053
mailto:jzho4727@uni.sydney.edu.au
mailto:clara.grazian@sydney.edu.au
mailto:john.ormerod@sydney.edu.au


DEHAENE, G. P. and BARTHELMÉ, S. (2015). Bounding errors of
expectation-propagation. Adv. Neural Inf. Process. Syst. 28.

DRAPER, D. (1993). Challenger USA Space Shuttle O-Ring. UCI Ma-
chine Learning Repository. Available at https://doi.org/10.24432/
C5PW2T.

ESKIN, E., SMOLA, A. and VISHWANATHAN, S. (2003). Laplace prop-
agation. Adv. Neural Inf. Process. Syst. 16.

ESLAMI, S., TARLOW, D., KOHLI, P. and WINN, J. (2014). Just-in-time
learning for fast and flexible inference. Adv. Neural Inf. Process.
Syst. 27.

FAES, C., ORMEROD, J. T. and WAND, M. P. (2011). Variational
Bayesian inference for parametric and nonparametric regres-
sion with missing data. J. Amer. Statist. Assoc. 106 959–971.
MR2894756 https://doi.org/10.1198/jasa.2011.tm10301

FREY, B. J. and MACKAY, D. (1997). A revolution: Belief propagation
in graphs with cycles. Adv. Neural Inf. Process. Syst. 10.

GELMAN, A., CARLIN, J. B., STERN, H. S. and RUBIN, D. B. (2020).
Bayesian Data Analysis, 2nd ed. Texts in Statistical Science Series.
CRC Press/CRC, Boca Raton, FL. MR2027492

GHAVAMI, K. and NARAGHI-POUR, M. (2017). Blind channel estima-
tion and symbol detection for multi-cell massive MIMO systems by
expectation propagation. IEEE Trans. Wirel. Commun. 17 943–954.

GONZÁLEZ, J., OSBORNE, M. and LAWRENCE, N. (2016). GLASSES:
Relieving the myopia of Bayesian optimisation. In Artificial Intel-
ligence and Statistics 790–799. PMLR.

GRIFFITHS, R.-R. and HERNÁNDEZ-LOBATO, J. M. (2020). Con-
strained Bayesian optimization for automatic chemical design us-
ing variational autoencoders. Chemical science 11 577–586.

GUIVER, J. and SNELSON, E. (2009). Bayesian inference for Plackett-
Luce ranking models. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning 377–384.

HASENCLEVER, L., WEBB, S., LIENART, T., VOLLMER, S., LAKSH-
MINARAYANAN, B., BLUNDELL, C. and TEH, Y. W. (2017). Dis-
tributed Bayesian learning with stochastic natural gradient expec-
tation propagation and the posterior server. J. Mach. Learn. Res. 18
Paper No. 106, 37 pp. MR3725445

HASTINGS, W. K. (1970). Monte Carlo sampling methods using
Markov chains and their applications. Biometrika 57 97–109.
MR3363437 https://doi.org/10.1093/biomet/57.1.97

HEESS, N., TARLOW, D. and WINN, J. (2013). Learning to pass expec-
tation propagation messages. Adv. Neural Inf. Process. Syst. 26.

HERNÁNDEZ-LOBATO, D. and HERNÁNDEZ-LOBATO, J. M. (2016).
Scalable Gaussian process classification via expectation propaga-
tion. In Artificial Intelligence and Statistics 168–176. PMLR.

HERNANDEZ-LOBATO, J., LI, Y., ROWLAND, M., BUI, T.,
HERNÁNDEZ-LOBATO, D. and TURNER, R. (2016). Black-
box alpha divergence minimization. In International Conference
on Machine Learning 1511–1520. PMLR.

HESKES, T., OPPER, M., WIEGERINCK, W., WINTHER, O. and
ZOETER, O. (2005). Approximate inference techniques with expec-
tation constraints. J. Stat. Mech. Theory Exp. 2005 P11015.

HESKES, T. and ZOETER, O. (2002). Expectation propogation for
approximate inference in dynamic Bayesian networks. Preprint.
Available at arXiv:1301.0572.

HESTER, J. and VAUGHAN, D. (2021). bench: High precision timing
of R expressions. R package version 1.1.2.

ILLIAN, J. B., SØRBYE, S. H. and RUE, H. (2012). A toolbox for fit-
ting complex spatial point process models using integrated nested
Laplace approximation (INLA). Ann. Appl. Stat. 6 1499–1530.
MR3058673 https://doi.org/10.1214/11-AOAS530

JITKRITTUM, W., GRETTON, A., HEESS, N., ESLAMI, S., LAKSHMI-
NARAYANAN, B., SEJDINOVIC, D. and SZABÓ, Z. (2015). Kernel-
based just-in-time learning for passing expectation propagation
messages. Preprint. Available at arXiv:1503.02551.

JONES, M. C., MARRON, J. S. and SHEATHER, S. J. (1996). A brief
survey of bandwidth selection for density estimation. J. Amer.
Statist. Assoc. 91 401–407. MR1394097 https://doi.org/10.2307/
2291420

JYLÄNKI, P., VANHATALO, J. and VEHTARI, A. (2011). Robust Gaus-
sian process regression with a Student-t likelihood. J. Mach. Learn.
Res. 12 3227–3257. MR2877599

KIM, A. S. I. and WAND, M. P. (2016). The explicit form of expecta-
tion propagation for a simple statistical model. Electron. J. Stat. 10
550–581. MR3471988 https://doi.org/10.1214/16-EJS1114

KIM, A. S. I. and WAND, M. P. (2018). On expectation propagation
for generalised, linear and mixed models. Aust. N. Z. J. Stat. 60
75–102. MR3780623 https://doi.org/10.1111/anzs.12199

KINGMA, D. P. and WELLING, M. (2013). Auto-encoding variational
Bayes. Preprint. Available at arXiv:1312.6114.

LAURITZEN, S. L. (1992). Propagation of probabilities, means, and
variances in mixed graphical association models. J. Amer. Statist.
Assoc. 87 1098–1108. MR1209568

LI, X., LI, C., CHI, J. and OUYANG, J. (2022). Approximate posterior
inference for Bayesian models: Black-box expectation propagation.
Knowl. Inf. Syst. 64 2361–2387.

LI, Y., HERNÁNDEZ-LOBATO, J. M. and TURNER, R. E. (2015).
Stochastic expectation propagation. Adv. Neural Inf. Process. Syst.
28.

LINDLEY, D. V. (1980). Approximate Bayesian methods. Trab. Estad.
Investig. Oper. 31 223–245.

MANOUCHEHRI, N. and BOUGUILA, N. (2021). Stochastic expecta-
tion propagation learning of infinite multivariate beta mixture mod-
els for human tissue analysis. In IECON 2021–47th Annual Confer-
ence of the IEEE Industrial Electronics Society 1–6. IEEE.

MAYBECK, P. S. (1982). Stochastic Models, Estimation, and Control.
Vol. 3. Mathematics in Science and Engineering 141. Academic
Press, London. MR0690418

MINKA, T. (2004). Power EP. Technical report, Microsoft Research,
Cambridge.

MINKA, T., WINN, J. M., GUIVER, J. P., ZAYKOV, Y., FABIAN, D. and
BRONSKILL, J. (2018). Infer.NET 0.3. Microsoft Research Cam-
bridge. Available at http://dotnet.github.io/infer.

MINKA, T. P. (2001a). A family of algorithms for approximate
Bayesian inference. Ph.D. thesis, Massachusetts Institute of Tech-
nology. MR2717007

MINKA, T. P. (2001b). The EP energy function and minimization
schemes. Technical report. Microsoft Research, Cambridge.

MINKA, T. P. (2005). Divergence measures and message passing.
Technical report, Microsoft Research, Cambridge.

MINKA, T. P. and LAFFERTY, J. (2012). Expectation-propogation for
the generative aspect model. Preprint. Available at arXiv:1301.
0588.

MUFF, S., RIEBLER, A., HELD, L., RUE, H. and SANER, P. (2015).
Bayesian analysis of measurement error models using integrated
nested Laplace approximations. J. R. Stat. Soc. Ser. C. Appl. Stat.
64 231–252. MR3302298 https://doi.org/10.1111/rssc.12069

MUÑOZ-GONZÁLEZ, L., LÁZARO-GREDILLA, M. and FIGUEIRAS-
VIDAL, A. R. (2011). Heteroscedastic Gaussian process regression
using expectation propagation. In 2011 IEEE International Work-
shop on Machine Learning for Signal Processing 1–6. IEEE.

OPPER, M. and WINTHER, O. (2000). Gaussian processes for clas-
sification: Mean-field algorithms. Neural Comput. 12 2655–2684.
https://doi.org/10.1162/089976600300014881

OPPER, M., WINTHER, O. and JORDAN, M. J. (2005). Expectation
consistent approximate inference. J. Mach. Learn. Res. 6.

ORMEROD, J. T. and WAND, M. P. (2010). Explaining variational ap-
proximations. Amer. Statist. 64 140–153. MR2757005 https://doi.
org/10.1198/tast.2010.09058

https://doi.org/10.24432/C5PW2T
https://doi.org/10.24432/C5PW2T
https://mathscinet.ams.org/mathscinet-getitem?mr=2894756
https://doi.org/10.1198/jasa.2011.tm10301
https://mathscinet.ams.org/mathscinet-getitem?mr=2027492
https://mathscinet.ams.org/mathscinet-getitem?mr=3725445
https://mathscinet.ams.org/mathscinet-getitem?mr=3363437
https://doi.org/10.1093/biomet/57.1.97
https://arxiv.org/abs/1301.0572
https://mathscinet.ams.org/mathscinet-getitem?mr=3058673
https://doi.org/10.1214/11-AOAS530
https://arxiv.org/abs/1503.02551
https://mathscinet.ams.org/mathscinet-getitem?mr=1394097
https://doi.org/10.2307/2291420
https://doi.org/10.2307/2291420
https://mathscinet.ams.org/mathscinet-getitem?mr=2877599
https://mathscinet.ams.org/mathscinet-getitem?mr=3471988
https://doi.org/10.1214/16-EJS1114
https://mathscinet.ams.org/mathscinet-getitem?mr=3780623
https://doi.org/10.1111/anzs.12199
https://arxiv.org/abs/1312.6114
https://mathscinet.ams.org/mathscinet-getitem?mr=1209568
https://mathscinet.ams.org/mathscinet-getitem?mr=0690418
http://dotnet.github.io/infer
https://mathscinet.ams.org/mathscinet-getitem?mr=2717007
https://arxiv.org/abs/1301.0588
https://arxiv.org/abs/1301.0588
https://mathscinet.ams.org/mathscinet-getitem?mr=3302298
https://doi.org/10.1111/rssc.12069
https://doi.org/10.1162/089976600300014881
https://mathscinet.ams.org/mathscinet-getitem?mr=2757005
https://doi.org/10.1198/tast.2010.09058
https://doi.org/10.1198/tast.2010.09058


OWEN, D. B. (1980). A table of normal integrals. Comm. Statist.
B—Simulation Comput. 9 389–419. MR0570844 https://doi.org/10.
1080/03610918008812164

PARK, M., BOHNER, G. and MACKE, J. H. (2015). Unlocking neural
population non-stationarities using hierarchical dynamics models.
Adv. Neural Inf. Process. Syst. 28.

QI, Y., MINKA, T. P., PICARD, R. W. and GHAHRAMANI, Z. (2004).
Predictive automatic relevance determination by expectation prop-
agation. In Proceedings of the Twenty-First International Confer-
ence on Machine Learning 85.

R CORE TEAM (2021). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Aus-
tria.

RASMUSSEN, C. E. and WILLIAMS, C. K. I. (2006). Gaussian Pro-
cesses for Machine Learning. Adaptive Computation and Machine
Learning. MIT Press, Cambridge, MA. MR2514435

RAYMOND, J., MANOEL, A. and OPPER, M. (2016). Expectation prop-
agation. Preprint. Available at arXiv:1409.6179.

RIBEIRO, F. and OPPER, M. (2011). Expectation propagation with
factorizing distributions: A Gaussian approximation and perfor-
mance results for simple models. Neural Comput. 23 1047–1069.
MR2840638 https://doi.org/10.1162/NECO_a_00104

RITTER, H., BOTEV, A. and BARBER, D. (2018). A scalable Laplace
approximation for neural networks. In 6th International Conference
on Learning Representations, ICLR 2018-Conference Track Pro-
ceedings 6. International Conference on Representation Learning.

RUE, H., MARTINO, S. and CHOPIN, N. (2009). Approximate
Bayesian inference for latent Gaussian models by using inte-
grated nested Laplace approximations. J. R. Stat. Soc. Ser. B.
Stat. Methodol. 71 319–392. MR2649602 https://doi.org/10.1111/
j.1467-9868.2008.00700.x

RUIZ-CÁRDENAS, R., KRAINSKI, E. T. and RUE, H. (2012).
Direct fitting of dynamic models using integrated nested
Laplace approximations—INLA. Comput. Statist. Data Anal.
56 1808–1828. MR2892379 https://doi.org/10.1016/j.csda.2011.
10.024

SALAMANCA, L., OLMOS, P. M., MURILLO-FUENTES, J. J. and
PÉREZ-CRUZ, F. (2013). Tree expectation propagation for ML de-
coding of LDPC codes over the BEC. IEEE Trans. Commun. 61
465–473.

SANTOS, I., MURILLO-FUENTES, J. J., BOLOIX-TORTOSA, R.,
ARIAS-DE REYNA, E. and OLMOS, P. M. (2016). Expectation prop-
agation as turbo equalizer in ISI channels. IEEE Trans. Commun.
65 360–370.

SEEGER, M. (2005). Expectation propagation for exponential families.
Technical report, LAPMAL.

SEEGER, M. and NICKISCH, H. (2011). Fast convergent algorithms for
expectation propagation approximate Bayesian inference. In Pro-
ceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics 652–660. JMLR Workshop and Confer-
ence Proceedings.

SEEGER, M., STEINKE, F. and TSUDA, K. (2007). Bayesian inference
and optimal design in the sparse linear model. In Artificial Intelli-
gence and Statistics 444–451. PMLR.

SENST, M. and ASCHEID, G. (2011). How the framework of expecta-
tion propagation yields an iterative IC-LMMSE MIMO receiver. In
2011 IEEE Global Telecommunications Conference-GLOBECOM
2011 1–6. IEEE.

SHEATHER, S. J. and JONES, M. C. (1991). A reliable data-based band-
width selection method for kernel density estimation. J. Roy. Statist.
Soc. Ser. B 53 683–690. MR1125725

STAN DEVELOPMENT TEAM (2023). RStan: The R interface to Stan.
R package version 2.21.8.

SUN, S. and HE, S. (2019). Generalizing expectation propagation with
mixtures of exponential family distributions and an application to
Bayesian logistic regression. Neurocomputing 337 180–190.

SWAROOP, S. and TURNER, R. E. (2017). Understanding expecta-
tion propagation. In Advances in Approximate Bayesian Inference
Workshop at NIPS.

TEH, Y. and WELLING, M. (2001). The unified propagation and scal-
ing algorithm. Adv. Neural Inf. Process. Syst. 14.

TIERNEY, L. and KADANE, J. B. (1986). Accurate approximations for
posterior moments and marginal densities. J. Amer. Statist. Assoc.
81 82–86. MR0830567

TIPPING, M. (1999). The relevance vector machine. Adv. Neural Inf.
Process. Syst. 12.

TITTERINGTON, D. M. (2011). The EM algorithm, variational approx-
imations and expectation propagation for mixtures. In Mixtures: Es-
timation and Applications. Wiley Ser. Probab. Stat. 1–29. Wiley,
Chichester. MR2883348 https://doi.org/10.1002/9781119995678.
ch1

TOLVANEN, V., JYLÄNKI, P. and VEHTARI, A. (2014). Expectation
propagation for nonstationary heteroscedastic Gaussian process re-
gression. In 2014 IEEE International Workshop on Machine Learn-
ing for Signal Processing (MLSP) 1–6. IEEE.

VEHTARI, A., GELMAN, A., SIVULA, T., JYLÄNKI, P., TRAN, D., SA-
HAI, S., BLOMSTEDT, P., CUNNINGHAM, J. P., SCHIMINOVICH, D.
et al. (2020). Expectation propagation as a way of life: A framework
for Bayesian inference on partitioned data. J. Mach. Learn. Res. 21
Paper No. 17, 53 pp. MR4071200

VILLACAMPA-CALVO, C. and HERNANDEZ-LOBATO, D. (2020). Al-
pha divergence minimization in multi-class Gaussian process clas-
sification. Neurocomputing 378 210–227.

WAINWRIGHT, M. J., JORDAN, M. I. et al. (2008). Graphical mod-
els, exponential families, and variational inference. Found. Trends
Mach. Learn. 1 1–305.

WIEGERINCK, W. and HESKES, T. (2002). Fractional belief propaga-
tion. Adv. Neural Inf. Process. Syst. 15.

WIPF, D. and NAGARAJAN, S. (2007). A new view of automatic rele-
vance determination. Adv. Neural Inf. Process. Syst. 20.

XU, M., LAKSHMINARAYANAN, B., TEH, Y. W., ZHU, J. and
ZHANG, B. (2014). Distributed Bayesian posterior sampling via
moment sharing. Adv. Neural Inf. Process. Syst. 27.

YEDIDIA, J. S., FREEMAN, W. T. and WEISS, Y. (2005). Construct-
ing free-energy approximations and generalized belief propagation
algorithms. IEEE Trans. Inf. Theory 51 2282–2312. MR2246363
https://doi.org/10.1109/TIT.2005.850085

YPMA, A. and HESKES, T. (2003). Iterated extended Kalman smooth-
ing with expectation-propagation. In 2003 IEEE XIII Workshop on
Neural Networks for Signal Processing (IEEE Cat. No. 03TH8718)
219–228. IEEE.

YPMA, A. and HESKES, T. (2005). Novel approximations for infer-
ence in nonlinear dynamical systems using expectation propaga-
tion. Neurocomputing 69 85–99.

YUILLE, A. L. (2002). CCCP algorithms to minimize the Bethe
and Kikuchi free energies: Convergent alternatives to belief prop-
agation. Neural Comput. 14 1691–1722. https://doi.org/10.1162/
08997660260028674

ZHANG, D., MENDES, L. L., MATTHÉ, M., GASPAR, I. S.,
MICHAILOW, N. and FETTWEIS, G. P. (2015). Expectation propa-
gation for near-optimum detection of MIMO-GFDM signals. IEEE
Trans. Wirel. Commun. 15 1045–1062.

ZHE, S., LEE, K.-C., ZHANG, K. and NEVILLE, J. (2016). Online
spike-and-slab inference with stochastic expectation propagation.
NIPS WS.

ZHOU, J., GRAZIAN, C. and ORMEROD, J. T. (2026). Supplement to “A
Bayesian Practitioner’s Guide to Expectation Propagation.” https://
doi.org/10.1214/24-STS957SUPP

https://mathscinet.ams.org/mathscinet-getitem?mr=0570844
https://doi.org/10.1080/03610918008812164
https://doi.org/10.1080/03610918008812164
https://mathscinet.ams.org/mathscinet-getitem?mr=2514435
https://arxiv.org/abs/1409.6179
https://mathscinet.ams.org/mathscinet-getitem?mr=2840638
https://doi.org/10.1162/NECO_a_00104
https://mathscinet.ams.org/mathscinet-getitem?mr=2649602
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://mathscinet.ams.org/mathscinet-getitem?mr=2892379
https://doi.org/10.1016/j.csda.2011.10.024
https://doi.org/10.1016/j.csda.2011.10.024
https://mathscinet.ams.org/mathscinet-getitem?mr=1125725
https://mathscinet.ams.org/mathscinet-getitem?mr=0830567
https://mathscinet.ams.org/mathscinet-getitem?mr=2883348
https://doi.org/10.1002/9781119995678.ch1
https://doi.org/10.1002/9781119995678.ch1
https://mathscinet.ams.org/mathscinet-getitem?mr=4071200
https://mathscinet.ams.org/mathscinet-getitem?mr=2246363
https://doi.org/10.1109/TIT.2005.850085
https://doi.org/10.1162/08997660260028674
https://doi.org/10.1162/08997660260028674
https://doi.org/10.1214/24-STS957SUPP
https://doi.org/10.1214/24-STS957SUPP


Statistical Science
2026, Vol. 41, No. 1, 188–200
https://doi.org/10.1214/24-STS958
© Institute of Mathematical Statistics, 2026

Markov Chain Monte Carlo Significance
Tests
Michael Howes

Abstract. Monte Carlo significance tests are a general tool that produce p-
values by generating samples from the null distribution. However, Monte
Carlo tests are limited to null hypothesis from which we can exactly sample.
Markov chain Monte Carlo (MCMC) significance tests are a way to pro-
duce statistical valid p-values for null hypothesis we can only approximately
sample from. These methods were first introduced by Besag and Clifford in
1989 and make no assumptions on the mixing time of the MCMC proce-
dure. Here we review the two methods of Besag and Clifford and introduce
a new method that unifies the existing procedures. We use simple examples
to highlight the difference between MCMC significance tests and standard
Monte Carlo tests based on exact sampling. We also survey a range of con-
temporary applications in the literature including goodness-of-fit testing for
the Rasch model, tests for detecting gerrymandering (Proc. Natl. Acad. Sci.
USA 114 (2017) 2860–2864) and a permutation based test of conditional in-
dependence (J. R. Stat. Soc. Ser. B. Stat. Methodol. 82 (2020) 175–197).

Key words and phrases: Hypothesis testing, p-values, Markov chain Monte
Carlo.
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From Corrado Gini’s Early Contributions to
Overdispersion to Modern Models of Voting
Behaviour
Antonio Forcina and Jose M. Pavía

Abstract. We review some early contributions by Corrado Gini to modi-
fied binomial models and predictive probability and highlight their role, once
extended to the multivariate context, for modelling voting behaviour in Eco-
logical Inference. A collection of overdispersed multinomial models are de-
scribed, their properties investigated and a connection to Gini’s results for the
corresponding binomial model, when available, is provided. After a concise
introduction to Ecological Inference, we discuss recent developments aiming
at more realistic models of voting behaviour and some connections to Gini’s
work.

Key words and phrases: History of statistics, predictive probability, fi-
nite exchangeability, compound distributions, association and overdisper-
sion, ecological inference.
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A Note on Distance Variance for Categorical
Variables
Qingyang Zhang

Abstract. This study investigates the extension of distance variance, a val-
idated spread metric for continuous and binary variables, to quantify the
spread of general categorical variables. We provide both geometric and al-
gebraic characterizations of distance variance, revealing its connections to
some commonly used entropy measures, and the variance-covariance ma-
trix of the one-hot encoded representation. However, we demonstrate that
distance variance fails to satisfy the Schur-concavity axiom for categorical
variables with more than two categories, leading to counterintuitive results.
This limitation hinders its applicability as a universal measure of spread.

Key words and phrases: Measure of spread, categorical data, distance vari-
ance, entropy.
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Conditionality Principle Under Unconstrained
Randomness
Vladimir Vovk

Abstract. A very simple example demonstrates that Fisher’s application of
the conditionality principle to regression (“fixed-x regression”), endorsed by
David Sprott and many other followers, makes prediction impossible in the
context of statistical learning theory. On the other hand, relaxing the require-
ment of conditionality makes it possible via, for example, conformal predic-
tion.

Key words and phrases: Assumption of randomness, conditionality princi-
ple, machine learning, prediction, regression.
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Choosing Alpha Post Hoc: The Danger of
Multiple Standard Significance Thresholds
Jesse Hemerik and Nick Koning

Abstract. A fundamental assumption of classical hypothesis testing is that
the significance threshold α is chosen independently from the data. The va-
lidity of confidence intervals likewise relies on choosing α beforehand. We
point out that the independence of α is guaranteed in practice, because in
most fields there exists one standard α that everyone uses—so that α is auto-
matically independent of everything. However, there have been recent calls
to decrease α from 0.05 to 0.005. We note that this may lead to multiple
accepted standard thresholds within one scientific field. For example, differ-
ent journals may require different significance thresholds. As a consequence,
some researchers may be tempted to conveniently choose their α based on
their p-value. We use examples to illustrate that this severely invalidates hy-
pothesis tests, and mention some potential solutions.

Key words and phrases: e-value, hypothesis test, Neyman–Pearson, p-
value, significance level.
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